2 research outputs found

    Longitudinal fluid dynamics for ultrarelativistic heavy-ion collisions

    Get PDF
    We develop a 1+1 dimensional hydrodynamical model for central heavy-ion collisions at ultrarelativistic energies. Deviations from Bjorken's scaling are taken into account by implementing finite-size profiles for the initial energy density. The calculated rapidity distributions of pions, kaons and antiprotons in central Au+Au collisions at the c.m. energy 200 AGeV are compared with experimental data of the BRAHMS Collaboration. The sensitivity of the results to the choice of the equation of state, the parameters of initial state and the freeze-out conditions is investigated. Experimental constraints on the total energy of produced particles are used to reduce the number of model parameters. The best fits of experimental data are obtained for soft equations of state and Gaussian-like initial profiles of the energy density. It is found that initial energy densities required for fitting experimental data decrease with increasing critical temperature of the phase transition.Comment: 22 pages, 8 figures; 4 figures and 12 references adde

    Temperature dependent sound velocity in hydrodynamic equations for relativistic heavy-ion collisions

    Full text link
    We analyze the effects of different forms of the sound-velocity function cs(T) on the hydrodynamic evolution of matter formed in the central region of relativistic heavy-ion collisions. At high temperatures (above the critical temperature Tc) the sound velocity is calculated from the recent lattice simulations of QCD, while in the low temperature region it is obtained from the hadron gas model. In the intermediate region we use different interpolations characterized by the values of the sound velocity at the local maximum (at T = 0.4 Tc) and local minimum (at T = Tc). In all considered cases the temperature dependent sound velocity functions yield the entropy density, which is consistent with the lattice QCD simulations at high temperature. Our calculations show that the presence of a distinct minimum of the sound velocity leads to a very long (about 20 fm/c) evolution time of the system, which is not compatible with the recent estimates based on the HBT interferometry. Hence, we conclude that the hydrodynamic description is favored in the case where the cross-over phase transition renders the smooth sound velocity function with a possible shallow minimum at Tc.Comment: 6 pages, 3 figures, talk given at SQM'07 Levoca, Slovaki
    corecore