50 research outputs found

    Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

    No full text
    The objective of the study is to investigate the potential of retrieving superficial soil moisture content (m(v)) from multi-temporal L-band synthetic aperture radar (SAR) data and hydrologic modelling. The study focuses on assessing the performances of an L-band SAR retrieval algorithm intended for agricultural areas and for watershed spatial scales (e. g. from 100 to 10 000 km(2)). The algorithm transforms temporal series of L-band SAR data into soil moisture contents by using a constrained minimization technique integrating a priori information on soil parameters. The rationale of the approach consists of exploiting soil moisture predictions, obtained at coarse spatial resolution ( e. g. 1530 km2) by point scale hydrologic models ( or by simplified estimators), as a priori information for the SAR retrieval algorithm that provides soil moisture maps at high spatial resolution (e. g. 0.01 km(2)). In the present form, the retrieval algorithm applies to cereal fields and has been assessed on simulated and experimental data. The latter were acquired by the airborne E-SAR system during the AgriSAR campaign carried out over the Demmin site (Northern Germany) in 2006. Results indicate that the retrieval algorithm always improves the a priori information on soil moisture content though the improvement may be marginal when the accuracy of prior mv estimates is better than 5%

    Global approaches and local strategies for phase unwrapping

    Get PDF
    Phase unwrapping, i.e. the retrieval of absolute phases from wrapped, noisy measures, is a tough problem because of the presence of rotational inconsistencies (residues), randomly generated by noise and undersampling on the principal phase gradient field. These inconsistencies prevent the recovery of the absolute phase field by direct integration of the wrapped gradients. In this paper we examine the relative merit of known global approaches and then we present evidence that our approach based on “stochastic annealing” can recover the true phase field also in noisy areas with severe undersampling, where other methods fail. Then, some experiments with local approaches are presented. A fast neural filter has been trained to eliminate close residue couples by joining them in a way which takes into account the local phase information. Performances are about 60–70% of the residues. Finally, other experiments have been aimed at designing an automated method for the determination of weight matrices to use in conjunction with local phase unwrapping algorithms. The method, tested with the minimum cost flow algorithm, gives good performances over both simulated and real data

    Assimilation of ASAR data for wheat field prediciton : Matera case study

    No full text
    corecore