11 research outputs found

    Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution

    Full text link
    Constraint solution reuse is an effective approach to save the time of constraint solving in symbolic execution. Most of the existing reuse approaches are based on syntactic or semantic equivalence of constraints; e.g. the Green framework is able to reuse constraints which have different representations but are semantically equivalent, through canonizing constraints into syntactically equivalent normal forms. However, syntactic/semantic equivalence is not a necessary condition for reuse--some constraints are not syntactically or semantically equivalent, but their solutions still have potential for reuse. Existing approaches are unable to recognize and reuse such constraints. In this paper, we present GreenTrie, an extension to the Green framework, which supports constraint reuse based on the logical implication relations among constraints. GreenTrie provides a component, called L-Trie, which stores constraints and solutions into tries, indexed by an implication partial order graph of constraints. L-Trie is able to carry out logical reduction and logical subset and superset querying for given constraints, to check for reuse of previously solved constraints. We report the results of an experimental assessment of GreenTrie against the original Green framework, which shows that our extension achieves better reuse of constraint solving result and saves significant symbolic execution time.Comment: this paper has been submitted to conference ISSTA 201

    Automated concolic testing of smartphone apps

    Get PDF
    We present an algorithm and a system for generating input events to exercise smartphone apps. Our approach is based on concolic testing and generates sequences of events automatically and systematically. It alleviates the path-explosion problem by checking a condition on program executions that identifies subsumption between different event sequences. We also describe our implementation of the approach for Android, the most popular smartphone app platform, and the results of an evaluation that demonstrates its effectiveness on five Android apps

    Targeted Greybox Fuzzing with Static Lookahead Analysis

    Full text link
    Automatic test generation typically aims to generate inputs that explore new paths in the program under test in order to find bugs. Existing work has, therefore, focused on guiding the exploration toward program parts that are more likely to contain bugs by using an offline static analysis. In this paper, we introduce a novel technique for targeted greybox fuzzing using an online static analysis that guides the fuzzer toward a set of target locations, for instance, located in recently modified parts of the program. This is achieved by first semantically analyzing each program path that is explored by an input in the fuzzer's test suite. The results of this analysis are then used to control the fuzzer's specialized power schedule, which determines how often to fuzz inputs from the test suite. We implemented our technique by extending a state-of-the-art, industrial fuzzer for Ethereum smart contracts and evaluate its effectiveness on 27 real-world benchmarks. Using an online analysis is particularly suitable for the domain of smart contracts since it does not require any code instrumentation---instrumentation to contracts changes their semantics. Our experiments show that targeted fuzzing significantly outperforms standard greybox fuzzing for reaching 83% of the challenging target locations (up to 14x of median speed-up)

    Sound regular expression semantics for dynamic symbolic execution of JavaScript

    Get PDF
    Existing support for regular expressions in automated test generation or verification tools is lacking. Common aspects of regular expression engines found in mainstream programming languages, such as backreferences or greedy matching, are commonly ignored or imprecisely approximated, leading to poor test coverage or failed proofs. In this paper, we present the first complete strategy to faithfully reason about regular expressions in the context of symbolic execution, focusing on the operators found in JavaScript. We model regular expression operations using string constraints and classical regular expressions and use a refinement scheme to address the problem of matching precedence and greediness. Our survey of over 400,000 JavaScript packages from the NPM software repository shows that one fifth make use of complex regular expressions features. We implemented our model in a dynamic symbolic execution engine for JavaScript and evaluated it on over 1,000 Node.js packages containing regular expressions, demonstrating that the strategy is effective and can increase line coverage of programs by up to 30%Comment: This arXiv version (v4) contains fixes for some typographical errors of the PLDI'19 version (the numbering of indices in Section 4.1 and the example in Section 4.3

    Charting patterns on price history

    Full text link

    An orchestrated survey of methodologies for automated software test case generation

    No full text
    Test case generation is among the most labour-intensive tasks in software testing. It also has a strong impact on the effectiveness and efficiency of software testing. For these reasons, it has been one of the most active research topics in software testing for several decades, resulting in many different approaches and tools. This paper presents an orchestrated survey of the most prominent techniques for automatic generation of software test cases, reviewed in self-standing sections. The techniques presented include: (a) structural testing using symbolic execution, (b) model-based testing, (c) combinatorial testing, (d) random testing and its variant of adaptive random testing, and (e) search-based testing. Each section is contributed by world-renowned active researchers on the technique, and briefly covers the basic ideas underlying the method, the current state of the art, a discussion of the open research problems, and a perspective of the future development of the approach. As a whole, the paper aims at giving an introductory, up-to-date and (relatively) short overview of research in automatic test case generation, while ensuring a comprehensive and authoritative treatment
    corecore