12 research outputs found
Diabetes, periodontitis, and the subgingival microbiota
Both type 1 and type 2 diabetes have been associated with increased severity of periodontal disease for many years. More recently, the impact of periodontal disease on glycaemic control has been investigated. The role of the oral microbiota in this two-way relationship is at this stage unknown. Further studies, of a longitudinal nature and investigating a wider array of bacterial species, are required in order to conclusively determine if there is a difference in the oral microbiota of diabetics and non-diabetics and whether this difference accounts, on the one hand, for the increased severity of periodontal disease and on the other for the poorer glycaemic control seen in diabetics
The NADPH oxidase NOX2 plays a role in periodontal pathologies
Oxidative stress plays an important role in periodontal health and disease. The phagocyte nicotinamide adenine dinucleotide phosphate oxidase NOX2 is most likely one of the key sources of reactive oxygen species (ROS) in periodontal tissues. This review will discuss three clinical aspects of NOX2 function. We will first focus on oral pathology in NOX2 deficiency such as chronic granulomatous disease (CGD). CGD patients are thought to suffer from infections and sterile hyperinflammation in the oral cavity. Indeed, the periodontium appears to be the most common site of infection in CGD patients; however, as periodontitis is also common in the general population, it is not clear to which extent these infections can be attributed to the disease. Secondly, the role of oxidative stress in periodontal disease of diabetic patients will be reviewed. Diabetes is indeed a major risk factor to develop periodontal disease, and increased activity of leukocytes is commonly observed. Enhanced NOX2 activity is likely to be involved in the pathomechanism, but data remains somewhat preliminary. The strongest case for involvement of NOX2 in periodontal diseases is aggressive periodontitis. Increased ROS generation by leukocytes from patients with aggressive periodontitis has clearly been documented. This increased ROS generation is to be caused by two factors: (1) genetically enhanced ROS generation and (2) oral pathogens that enhance NOX function. NOX enzymes in the oral cavity have so far received little attention but are likely to be important players in this setting. New therapies could be derived from these new concepts
Differences in the subgingival microbial population of chronic periodontitis in subjects with and without type 2 diabetes mellitus-a systematic review
The work was supported by the Department of Periodontology,
UCL Eastman Dental Institute, London, U