2,350 research outputs found

    A novel technique for selective NF-kappa B inhibition in Kupffer cells: contrary effects in fulminant hepatitis and ischaemia-reperfusion.

    Get PDF
    Background and aims: The transcription factor nuclear factor kappa B (NF-kB) has risen as a promising target for anti-inflammatory therapeutics. In the liver, however, NFkB inhibition mediates both damaging and protective effects. The outcome is deemed to depend on the liver cell type addressed. Recent gene knock-out studies focused on the role of NF-kB in hepatocytes, whereas the role of NF-kB in Kupffer cells has not yet been investigated in vivo. Here we present a novel approach, which may be suitable for clinical application, to selectively target NF-kB in Kupffer cells and analyse the effects in experimental models of liver injury. Methods: NF-kB inhibiting decoy oligodeoxynucleotides were loaded upon gelatin nanoparticles (D-NPs) and their in vivo distribution was determined by confocal microscopy. Liver damage, NF-kB activity, cytokine levels and apoptotic protein expression were evaluated after lipopolysaccharide (LPS), D-galactosamine (GalN)/LPS, or concanavalin A (ConA) challenge and partial warm ischaemia and subsequent reperfusion, respectively. Results: D-NPs were selectively taken up by Kupffer cells and inhibited NF-kB activation. Inhibition of NF-kB in Kupffer cells improved survival and reduced liver injury after GalN/LPS as well as after ConA challenge. While anti-apoptotic protein expression in liver tissue was not reduced, pro-apoptotic players such as cJun N-terminal kinase (JNK) were inhibited. In contrast, selective inhibition of NF-kB augmented reperfusion injury. Conclusions: NF-kB inhibiting decoy oligodeoxynucleotide- loaded gelatin nanoparticles is a novel tool to selectively inhibit NF-kB activation in Kupffer cells in vivo. Thus, liver injury can be reduced in experimental fulminant hepatitis, but increased at ischaemia–reperfusion

    Quantification of Ophthalmic Changes After Long-Duration Spaceflight, and Subsequent Recovery

    Get PDF
    A subset of crewmembers are subjected to ophthalmic structure changes due to long-duration spaceflight (>6 months). Crewmembers who experience these changes are described as having Spaceflight Associated Neuro-Ocular Syndrome (SANS). Characteristics of SANS include optic disk edema, cotton wool spots, choroidal folds, refractive error, and posterior globe flattening. SANS remains a major obstacle to deep-space and planetary missions, requiring a better understanding of its etiology. Quantification of ocular, structural changes will improve our understanding of SANS pathophysiology. Methods were developed to quantify 3D optic nerve (ON) and ON sheath (ONS) geometries, ON tortuosity, and posterior globe deformation using MR imaging

    Quantitative motor assessment of muscular weakness in myasthenia gravis: a pilot study

    Get PDF
    BACKGROUND: Muscular weakness in myasthenia gravis (MG) is commonly assessed using Quantitative Myasthenia Gravis Score (QMG). More objective and quantitative measures may complement the use of clinical scales and might detect subclinical affection of muscles. We hypothesized that muscular weakness in patients with MG can be quantified with the non-invasive Quantitative Motor (Q-Motor) test for Grip Force Assessment (QGFA) and Involuntary Movement Assessment (QIMA) and that pathological findings correlate with disease severity as measured by QMG. METHODS: This was a cross-sectional pilot study investigating patients with confirmed diagnosis of MG. Data was compared to healthy controls (HC). Subjects were asked to lift a device (250 and 500 g) equipped with electromagnetic sensors that measured grip force (GF) and three-dimensional changes in position and orientation. These were used to calculate the position index (PI) and orientation index (OI) as measures for involuntary movements due to muscular weakness. RESULTS: Overall, 40 MG patients and 23 HC were included. PI and OI were significantly higher in MG patients for both weights in the dominant and non-dominant hand. Subgroup analysis revealed that patients with clinically ocular myasthenia gravis (OMG) also showed significantly higher values for PI and OI in both hands and for both weights. Disease severity correlates with QIMA performance in the non-dominant hand. CONCLUSION: Q-Motor tests and particularly QIMA may be useful objective tools for measuring motor impairment in MG and seem to detect subclinical generalized motor signs in patients with OMG. Q-Motor parameters might serve as sensitive endpoints for clinical trials in MG

    Large-Scale Cryogenic Testing of Launch Vehicle Ground Systems at the Kennedy Space Center

    Get PDF
    The development of a new launch vehicle to support NASA's future exploration plans requires significant redesign and upgrade of Kennedy Space Center's (KSC) launch pad and ground support equipment systems. In many cases, specialized test equipment and systems will be required to certify the function of the new system designs under simulated operational conditions, including propellant loading. This paper provides an overview of the cryogenic test infrastructure that is in place at KSC to conduct development and qualification testing that ranges from the component level to the integrated-system level. An overview of the major cryogenic test facilities will be provided, along with a detailed explanation of the technology focus area for each facilit

    The Safe Removal of Frozen Air from the Annulus of an LH2 Storage Tank

    Get PDF
    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modeling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods
    corecore