13 research outputs found

    Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change.

    Get PDF
    Globally, carbon-rich mangrove forests are deforested and degraded due to land-use and land-cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25-years LULCC chronosequence. Field-based assessments were conducted across 255 plots covering undisturbed and LULCC-affected mangroves (0-, 5-, 10-, 15- and 25-year-old post-harvest or regenerating forests as well as 15-year-old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182-2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha-1  year-1 . This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long-term land-use changes affect carbon loss and gain to a substantial degree. Therefore, current land-based climate policies must incorporate landscape and land-use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes

    Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment

    No full text
    Abstract West Papua’s Bintuni Bay is Indonesia’s largest contiguous mangrove block, only second to the world’s largest mangrove in the Sundarbans, Bangladesh. As almost 40% of these mangroves are designated production forest, we assessed the effects of commercial logging on forest structure, biomass recovery, and soil carbon stocks and burial in five-year intervals, up to 25 years post-harvest. Through remote sensing and field surveys, we found that canopy structure and species diversity were gradually enhanced following biomass recovery. Carbon pools preserved in soil were supported by similar rates of carbon burial before and after logging. Our results show that mangrove forest management maintained between 70 and 75% of the total ecosystem carbon stocks, and 15–20% returned to the ecosystem after 15–25 years. This analysis suggests that mangroves managed through selective logging provide an opportunity for coastal nature-based climate solutions, while provisioning other ecosystem services, including wood and wood products

    Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia

    No full text
    Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them

    The potential of Indonesian mangrove forests for global climate change mitigation

    No full text
    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 ± 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia's mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change

    Evaluation of Plant Growth and Potential of Carbon Storage in the Restored Mangrove of an Abandoned Pond in Lubuk Kertang, North Sumatra, Indonesia

    No full text
    Mangrove forest in Lubuk Kertang Village, West Brandan sub-district has been converted around 20 ha annually (1996–2016) into various non-forest land use. Rehabilitation can be a solution to restore the condition of the ecosystem so that it can resume its ecological and economic functions. This paper discusses the evaluation of mangrove rehabilitation carried out by planting 6000 propagules in December 2015 and 5000 seedlings in May 2016 with Rhizophora apiculata species in abandoned ponds. Monitoring was carried out every 6 months from 2016 to 2022. In the restored area, 11 true mangrove species and 3 associated mangrove species were found. The percentage of plants that survived after seven years was 69.42% for planting using propagules and 86.38% for planting with seedlings. The total biomass carbon stocks stored by 7-year-old plants using propagules was 51.18 Mg ha−1, while the carbon stored by planting using seedlings was 56.79 Mg ha−1. Soil carbon stocks at the planted site with propagules were 506.89 ± 250.74 MgC ha−1, and at the planted site with seedlings were 461.85 ± 102.23 MgC ha−1. The total ecosystem carbon stocks (including aboveground carbon) in the planted site using propagules were 558.07 MgC ha−1, while planting using seedlings were 518.64 MgC ha−1. The dataset and findings on the carbon storage evaluation of mangrove rehabilitation will be useful for blue carbon research community and policymakers in the context of the climate change mitigation strategy for Indonesia
    corecore