5 research outputs found

    Consequences of diagnosing a tumor predisposition syndrome in children with cancer : A literature review

    No full text
    Up to 8.5% of children with cancer have a genetic cause for their cancer: a tumor predisposition syndrome (TPS). Diagnosing a TPS is of great importance, as it may have major consequences for clinical care. Patients with TPSs require specific monitoring and management. We present an overview of the cancer-related and noncancer-related consequences for the 36 most common TPSs

    Validation of a clinical screening instrument for tumour predisposition syndromes in patients with childhood cancer (TuPS): Protocol for a prospective, observational, multicentre study

    No full text
    Introduction: Recognising a tumour predisposition syndrome (TPS) in patients with childhood cancer is of significant clinical relevance, as it affects treatment, prognosis and facilitates genetic counselling. Previous studies revealed that only half of the known TPSs are recognised during standard paediatric cancer care. In current medical practice it is impossible to refer every patient with childhood cancer to a clinical geneticist, due to limited capacity for routine genetic consultation. Therefore, we have developed a screening instrument to identify patients with childhood cancer with a high probability of having a TPS. The aim of this study is to validate the clinical screening instrument for TPS in patients with childhood cancer. Methods and analysis: This study is a prospective nationwide cohort study including all newly diagnosed patients with childhood cancer in the Netherlands. The screening instrument consists of a checklist, two- and three-dimensional photographic series of the patient. 2 independent clinical geneticists will assess the content of the screening instrument. If a TPS is suspected based on the instrument data and thus further evaluation is indicated, the patient will be invited for full genetic consultation. A negative control group consists of 20% of the patients in whom a TPS is not suspected based on the instrument; they will be randomly invited for full genetic consultation. Primary outcome measurement will be sensitivity of the instrument. Ethics and dissemination: The Medical Ethical Committee of the Academic Medical Centre stated that the Medical Research Involving Human Subjects Act does not apply to this study and that official approval of this study by the Committee was not required. The results will be offered for publication in peer-reviewed journals and presented at International Conferences on Oncology and Clinical Genetics. The clinical data gathered in this study will be available for all participating centres

    Clinical value of a screening tool for tumor predisposition syndromes in childhood cancer patients (TuPS)

    Get PDF
    Recognizing a tumor predisposition syndrome (TPS) in a child with cancer is of clinical relevance. Earlier we developed a screening tool to increase diagnostic accuracy and clinical efficiency of identifying TPSs in children with cancer. Here we report on the value of this tool in clinical practice. TuPS is a prospective, observational, multi-center study including children newly diagnosed with cancer from 2016 to 2019 in the Netherlands. Children in whom a TPS had been diagnosed before the cancer diagnosis were excluded. The screening tool consists of a checklist, 2D and 3D photographic series and digital assessment of these by a clinical geneticist. If a TPS was suspected, the patient was assessed positive and referred for routine genetic consultation. Primary aim was to assess the clinical value of this new screening tool. Of the 363 included patients, 57% (208/363) were assessed positive. In 15% of patients (32/208), the 2D photographic series with (n = 12) or without (n = 20) 3D photographs were decisive in the positive assessment. In 2% (4/208) of positive assessed patients, a TPS was diagnosed, and in an additional 2% (4/208) a germline variant of uncertain significance was found. Thirty-five negatively assessed patients were evaluated through routine genetic consultation as controls, in none a TPS was detected. Using the screening tool, 57% of the patients were assessed as suspected for having a TPS. No false negative results were identified in the negative control group in the clinical care setting. The observed prevalence of TPS was lower than expected, due to selection bias in the cohort.</p

    The clinical and molecular spectrum of the KDM6B-related neurodevelopmental disorder

    Get PDF
    De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause “neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities.” Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders

    The clinical and molecular spectrum of the KDM6B-related neurodevelopmental disorder

    No full text
    International audienceDe novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders
    corecore