4 research outputs found

    IGFBP3 impedes aggressive growth of pediatric liver cancer and is epigenetically silenced in vascular invasive and metastatic tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatoblastoma (HB) is an embryonal liver neoplasm of early childhood with a poor prognosis for patients with distant metastases and vascular invasion. We and others have previously shown that the overexpression of <it>insulin-like growth factor 2 </it>(<it>IGF2</it>), loss of imprinting at the <it>IGF2</it>/<it>H19 </it>locus, and amplification of <it>pleomorphic adenoma gene 1 </it>(<it>PLAG1</it>) are common features in HB, suggesting a critical role of the IGF axis in hepatoblastomagenesis. In this study, we investigated the role of the insulin-like growth factor binding protein 3 (IGFBP3), a known competitor of the IGF axis, in pediatric liver cancers.</p> <p>Results</p> <p>The <it>IGFBP3 </it>gene was highly expressed in normal pediatric livers but was heavily downregulated in four HB cell lines and the majority of HB primary tumors (26/36). Detailed methylation analysis of CpG sites in the <it>IGFBP3 </it>promoter region by bisulfite sequencing revealed a high degree of DNA methylation, which is causatively associated with the suppression of <it>IGFBP3 </it>in HB cell lines. Consequently, the treatment of HB cell lines with 5-aza-2'-deoxycytidine resulted in DNA demethylation and reactivation of the epigenetically silenced <it>IGFBP3 </it>expression. Interestingly, <it>IGFBP3 </it>promoter methylation predominantly occurred in metastatic HB with vascular invasion. Restoring <it>IGFBP3 </it>expression in HB cells resulted in reduced colony formation, migration, and invasion.</p> <p>Conclusion</p> <p>This study provides the first direct evidence that the reactivation of <it>IGFBP3 </it>decreases aggressive properties of pediatric liver cancer cells and that <it>IGFBP3 </it>promoter methylation might be used as an indicator for vessel-invasive tumor growth in HB patients.</p

    The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1

    Get PDF
    Aberrant DNA methylation is often associated with cancer and the formation of tumors; however, the underlying mechanisms, in particular the recruitment and regulation of DNA methyltransferases remain largely unknown. In this study, we identified USP7 as an interaction partner of Dnmt1 and UHRF1 in vivo. Dnmt1 and USP7 formed a soluble dimer complex that associated with UHRF1 as a trimeric complex on chromatin. Complex interactions were mediated by the C-terminal domain of USP7 with the TS-domain of Dnmt1, whereas the TRAF-domain of USP7 bound to the SRA-domain of UHRF1. USP7 was capable of targeting UHRF1 for deubiquitination and affects UHRF1 protein stability in vivo. Furthermore, Dnmt1, UHRF1 and USP7 co-localized on silenced, methylated genes in vivo. Strikingly, when analyzing the impact of UHRF1 and USP7 on Dnmt1-dependent DNA methylation, we found that USP7 stimulated both the maintenance and de novo DNA methylation activity of Dnmt1 in vitro. Therefore, we propose a dual role of USP7, regulating the protein turnover of UHRF1 and stimulating the enzymatic activity of Dnmt1 in vitro and in vivo

    Overexpression of UHRF1 promotes silencing of tumor suppressor genes and predicts outcome in hepatoblastoma

    Get PDF
    Background: Hepatoblastoma (HB) is the most common liver tumor of childhood and occurs predominantly within the first 3 years of life. In accordance to its early manifestation, HB has been described to display an extremely low mutation rate. As substitute, epigenetic modifiers seem to play an exceptional role in its tumorigenesis, which holds promise to develop targeted therapies and establish biomarkers for patient risk stratification. Results: We examined the role of a newly described protein complex consisting of three epigenetic regulators, namely E3 ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), ubiquitin-specific-processing protease 7 (USP7), and DNA methyltransferase 1 (DNMT1), in HB. We found the complex to be located on the promoter regions of the pivotal HB-associated tumor suppressor genes (TSGs) HHIP, IGFBP3, and SFRP1 in HB cells, thereby leading to strong repression through DNA methylation and histone modifications. Consequently, knockdown of UHRF1 led to DNA demethylation and loss of the repressive H3K9me2 histone mark at the TSG loci with their subsequent transcriptional reactivation. The observed growth impairment of HB cells upon UHRF1 knockdown could be attributed to reduced expression of genes involved in cell cycle progression, negative regulation of cell death, LIN28B signaling, and the adverse 16-gene signature, as revealed by global RNA sequencing. Clinically, overexpression of UHRF1 in primary tumor tissues was significantly associated with poor survival and the prognostic high-risk 16-gene signature. Conclusion: These findings suggest that UHRF1 is critical for aberrant TSG silencing and sustained growth signaling in HB and that UHRF1 overexpression levels might serve as a prognostic biomarker and potential molecular target for HB patients

    Additional file 1: of Overexpression of UHRF1 promotes silencing of tumor suppressor genes and predicts outcome in hepatoblastoma

    No full text
    Figure S1. Relative RNA expression levels of indicated genes in HUH6 cells 24 h after UHRF1 knockdown compared to control-transfected cells. Data were normalized to the expression level of the housekeeping gene TBP. The average of two independent knockdown experiments is shown. Statistical significance of all experiments was calculated using t test (p < 0.05). (PNG 110 kb
    corecore