21 research outputs found

    Silk Degumming with Dried Latex of Carica Papaya Linn

    Get PDF
    Degumming process is a fundamental finishing process for silk yarn and silk fabric. The main objective is scouring the substrate such as silk gum (sericin), wax and some impurities from silk fiber.Degumming process is a fundamental finishing process for silk yarn and silk fabric. The main objective is scouring the substrate such as silk gum (sericin), wax and some impurities from silk fiber. The principle of degumming process is breaking the peptide linkage of amino acid in sericin structure into a small molecule, which is soluble in water. The hydrolysis reaction performed by acid and alkaline, but they have a big problem on the surface area of silk. Proteolytic enzyme be used to solve this problem but it has some disvantages such as it was using a specific condition and expensive. For this reason, this research chooses papain enzyme form dried latex of Carica payapa Linn. to degum the raw silk. The efficiency of degumming process was evaluated by determination of tensile strength and staining test with direct dyes (C.I. Direct Red 80). The result was revealed; the appropriate conditions for silk degumming with dried Carica payapa Linn.’s latex be recommended as follows: the amount of dried latex solution of 4 % owf at 75 degree Celsius for 30 minutes, in this condition was not harm to strength and fiber surface. The degummed fibers still had lustrous, soft and smooth surface

    Impact from Unrest Situations in the Southernmost Provinces on Stress and Coping, Quality of Life and Nursing Administration as Perceived

    Get PDF
    The purposes of this descriptive research were to study the impact of the unrest situations in the southernmost provinces of Thailand on: 1) the stress of nurse administrators; 2) their methods of coping with the stress; 3) the effect on their quality of life; and 4) the impact on nursing administration. The sample consisted of a group of 72 nurse administrators in the southernmost provinces. The instrument used in this study was a questionnaire consisting of five parts. Part 1 collected demographic data; part 2 surveyed stress; part 3 examined how the participants coped with the stress; part 4 surveyed the quality of life of the participants; and part 5 was a focus-group interview regarding the nursing administration process. The data of parts 1 to part 4 were collected by self-report questionnaires, and were analyzed by frequency, percent, mean, and standard deviation; while the data for part 5 were obtained by eight focus-group interviews with 45 out of 72 nurse administrators, and were analyzed by content analysis. The results showed that a majority of the sample perceived overall stress, coping with the stress, and quality of life to be at moderate levels. The themes that emerged from the focus-group interviews reflected both pros and cons of nursing administration. Nurse administrators can use them as a guide for modifying nursing management skills in order to provide effective care despite the limited resources and pressures in these southernmost provinces

    Fabrication of Silk Fibroin Nanofibres by Needleless Electrospinning

    Get PDF
    Silk fibroin nanofibres were fabricated using a needleless electrospinning technique. The procedure focused on a new method for the preparation of a spinning solution from silk fibroin. The role of the concentration of silk fibroin solution, applied voltage and spinning distance were investigated as a function of the morphology of the obtained fibres and the spinning performance of the electrospinning process. The biocompatibility of the obtained fibre sheets was evaluated using an in vitro testing method with MG‐63 osteoblasts. The solvent system consisted of formic acid and calcium chloride that can dissolve silk fibroin at room temperature, and a rate of 0.25 g of calcium chloride per 1 g of silk fibroin was required to obtain a completely dissolved silk fibroin solution. The diameters of the silk electrospun fibres obtained from the formic acid–calcium chloride solvent system ranged from 100 to 2400 nm, depending on the spinning parameters. Furthermore, increasing the concentration of the silk fibroin solution and the applied voltage improved spinning ability and spinning performance in needleless electrospinning. In addition, in vitro tests with living cells showed that the obtained electrospun fibre sheets were highly biocompatible with MG‐63 osteoblasts

    Příprava netkanÃ―ch textilií s obsahem hedvÃĄbnÃ―ch vlÃĄken získanÃ―ch metodou elektrostatickÃĐho zvlÃĄkňovÃĄní

    Get PDF
    Tato dizertační prÃĄce se zabÃ―vÃĄ vÃ―robou nanovlÃĄkennÃ―ch vrstev z fibroinu z přírodního hedvÃĄbí (silk fibroin, dÃĄle jen SF), a směsí SF s polykaprolaktonem (PCL) připravenÃĐ metodou bezjehlovÃĐho elektrostatickÃĐho zvlÃĄkňovÃĄní (technologie NanospiderTM). V procesu zvlÃĄkňovÃĄní byla zkoumÃĄna inovativní metoda přípravy zvlÃĄkňovacího roztoku SF za pouÅūití rozpouÅĄtědla ve formě směsi kyseliny mravenčí a chloridu vÃĄpenatÃĐho. VÃ―zkum byl zaměřen na vliv koncentrace roztoku fibroinu, pouÅūitÃĐho napětí a vzdÃĄlenosti elektrod na morfologii vzniklÃ―ch vlÃĄken i na samotnÃ― proces zvlÃĄkňovÃĄní. In vitro testy za pouÅūití 3T3 myÅĄÃ­ch fibroblastÅŊ, lidskÃ―ch koÅūních fibroblastÅŊ, MG 63 osteoblastÅŊ a lidskÃ―ch endotelovÃ―ch buněk z pupečníkovÃĐ Åūíly byly zvoleny pro hodnocení biokompatibility vlÃĄkennÃ―ch vrstev. DÃĄle byla sledovÃĄna pevnost v tahu a hydrofilita spolu s dalÅĄÃ­mi fyzikÃĄlní vlastnostmi vytvořenÃ―ch vlÃĄkennÃ―ch vrstev. RozpouÅĄtědlovÃ― systÃĐm, kterÃ― sestÃĄval z kyseliny mravenčí a chloridu vÃĄpenatÃĐho, byl schopen rozpustit SF za pokojovÃĐ teploty při pouÅūití poměru 0,25 g chloridu vÃĄpenatÃĐho na 1 g SF. Tento rozpouÅĄtědlovÃ― systÃĐm je vhodnÃ― pro nanovlÃĄken metodou elektrostatickÃĐho zvlÃĄkňovÃĄní na poloprovozní jednotce Superlab.PrÅŊměr vlÃĄken, získanÃ―ch za pouÅūití zmíněnÃĐho rozpouÅĄtědlovÃĐho systÃĐmu, se pohyboval v rozmezí 100 nm aÅū 2400 nm v zÃĄvislosti na parametrech zvlÃĄkňovacího procesu. Pro přípravu nanovlÃĄken prostřednictvím bezjehlovÃĐho zvlÃĄkňovÃĄní byla optimÃĄlní koncentrace SF od 8% hmot. do 12% hmot. S rostoucí koncentrací a napětím se zlepÅĄovala zvlÃĄknitelnost roztoku a produktivita zvlÃĄkňovacího procesu. Zatímco vlÃĄkna ze samotnÃĐho SF měla ÅĄpatnÃĐ mechanickÃĐ vlastnosti, ukÃĄzalo se, Åūe ve směsi s PCL dochÃĄzelo k vÃ―raznÃĐmu zlepÅĄení. PrÅŊměr směsnÃ―ch nanovlÃĄken byl niÅūÅĄÃ­ a pruÅūnost těchto vrstev byla vyÅĄÅĄÃ­ neÅū v případě čistÃĐho SF. Se zvyÅĄujícím se podílem PCL vÅĄak dochÃĄzelo ke zhorÅĄení zvlÃĄkňovacího procesu.NanovlÃĄkennÃĐ vrstvy z čistÃĐho SF a ze směsi SF a PCL jsou materiÃĄly s potenciÃĄlem pro vyuÅūití v biomedicínskÃ―ch aplikacích, jako jsou kryty ran nebo tkÃĄÅˆovÃĐ inÅūenÃ―rství zaměřenÃĐ na regeneraci kostních tkÃĄní. In vitro testy s ÅūivÃ―mi buňkami, předevÅĄÃ­m MG 63 osteoblasty, potvrdily velmi dobrou biokompatibilitu připravenÃ―ch nanovlÃĄkennÃ―ch vrstev. PCL/SF nanovlÃĄkna navíc naÅĄla svÃĐ uplatnění jako nosič pro imobilizaci lakÃĄzy Trametes versicolor. Nejen Åūe se tato směsnÃĄ nanovlÃĄkna uplatnila jako nosič pro enzym, ale zÃĄroveň měla imobilizovanÃĄ lakÃĄza velmi dobrÃĐ vÃ―sledky v oblasti degradace endokrinních disruptorÅŊ (bisfenol A a 17?-ethinyl estradiol). Imobilizace lakÃĄzy na PCL/SF nanovlÃĄkna mÃĄ potenciÃĄl pro vyuÅūití při čiÅĄtění odpadních vod.This dissertation was concerned and focused a fabrication of a silk fibroin (SF) nonwoven sheet and its blending with polycaprolactone (PCL) via a needleless electrospinning technique (technology Nanospider?). The procedure concentrated on a novel method for the preparation of a spinning solution from silk fibroin, by using a mixture of formic acid and calcium chloride as a solvent. The role of concentration of silk fibroin solution, applied voltage and spinning distance are investigated as a function of the morphology of obtained fibres and the spinning performance of the electrospinning process. Biocompatibility of the obtained fibre sheets that resulted from the experiment was evaluated by in vitro testing method, with 3T3 mouse fibroblasts, normal human dermal fibroblasts, MG 63 osteoblasts and human umbilical vein endothelial cells. Tensile strength and hydrophilicity as well as physical properties evaluation of electrospun fibre sheets were performed. The solvent system consists of formic acid and calcium chloride that can dissolve SF at room temperature, a rate of 0.25 gram of calcium chloride per 1 gram of silk fibroin is required to obtain the completely dissolved silk fibroin solution. This solvent system could be potentially employed and used for a preparation of silk fibroin solution for a large-scale production of silk nanofibres, with a needleless electrospinning method. The diameters of the silk electrospun fibres obtained from the formic acid-calcium chloride solvent system had a diameter ranging from 100 nm to 2400 nm depending upon the spinning parameters. Concentrations of silk fibroin in the range of 8 wt% to 12 wt% seem to be a suitable concentration for the preparation of a nanofibre sheet, with needleless electrospinning. Furthermore, increasing the concentration of the silk fibroin solution and the applied voltage improved the spinning ability and the spinning performance in needleless electrospinning. Pure silk fibroin electrospun fibres have poor mechanical properties, while research indicates blending PCL with silk fibroin can improve mechanical properties significantly. The diameters of the blended SF/PCL electrospun fibres were smaller and the elasticity was greater than the pure SF elctrospun fibres. However, an increase of PCL content in the blended solution affected the spinning performance of the process. The spinning performance of the electrospinning process tends to decrease as the polycaprolactone content in the blended solution increases.Silk electrospun fibre sheets and its blends with PCL are promising materials for the biomedical applications such as wound dressing and bone tissue engineering. In vitro tests with living cells show very good biocompatibility of the electrospun fibre sheets, especially with MG 63 osteoblasts. In addition, the PCL/SF blend fibre sheets have been applied as supports for immobilization of laccase from Trametes versicolor. The blended fibre sheet were suitable for enzyme immobilization and the blended fibre sheets with the laccase immobilized showed very good results in the degradation of endocrine disrupting chemicals (bisphenol A and 17?-ethinyl estradiol). The laccase immobilization onto the PCL/SF blend fibre sheets seems to be a promising system for bioremediation of wastewater treatment

    āļāļēāļĢāđ€āļ•āļĢāļĩāļĒāļĄāļœāđ‰āļēāđ„āļĄāđˆāļ—āļ­āļˆāļēāļāđƒāļšāļ­āđ‰āļ­āļĒ

    No full text
    āļĢāļēāļĒāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒ -- āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļĢāļēāļŠāļĄāļ‡āļ„āļĨāļžāļĢāļ°āļ™āļ„āļĢ, 2552This research was concerned with the fiber separation and non-woven preparation form sugar cane's leaves. The separation process was carried out by chemical pulping method at 100 degree Celsius. In order to study the suitable condition for separation process, the concentration of sodium hydroxide ranging from 0 -20 grams per liter and boiling time 15, 30, 45, 60, 75, 90, 105 and 120 minutes were performed. Web formation process was performed by wet laid method and polyvinyl alcohol was selected as binder in web bonding process. in order to study the suitable amount of binder in bonding process, concentration of polyvinyl alcohol ranging from 1, 2, 4, 6, 8 and 10 % w/v coated on web surface and cured at 120 degree Celsius. Bursting strength as well as physical properties evaluation of non-woven fabrics was performed. For antimicrobial finishing process was performed by spray method and pad method. The finishing result was evaluated by MTCC test method 147-1998 (Qualitative) and 100 -1999 (Quantitative) The result was found that appropriate condition for fiber separation was recommended as follows: the amount of sodium hydroxide of 10 grams per liter and boiling time 60 minutes. The suitable amount of polyvinyl alcohol for web bonding process was 2 % w/v. Bursting strength of non-woven fabric was 53 kN/m 3 and padding method was a suitable method for antimicrobial finishing (antimicrobial area 0.3 millimeters )Rajamangala University of Technology Phra Nakho

    āļāļēāļĢāļžāļąāļ’āļ™āļēāļŠāļēāļĢāļ‚āđ‰āļ™āļˆāļēāļāđāļ›āđ‰āļ‡āļāļĨāļ­āļĒ

    No full text
    āļĢāļēāļĒāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒ -- āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļĢāļēāļŠāļĄāļ‡āļ„āļĨāļžāļĢāļ°āļ™āļ„āļĢ, 2553Thickening agent is a substance, when it was using to increase viscosity of an aqueous solution but other properties were not substantially modifying. it had major roles in textile printing process via adjust the print paste viscosity. transfer dye and auxiliaries into fabric. Thickening agent type starch had used in textile printing but it was a troublesome production also high cost. In this research had and feasible study to placement of dry Dioscorea hispida Dennst for textile printing processes such as direct dye and reactive dye printing on cotton woven fabric, acid dye printing on nylon woven fabric, and disperse dye on polyester woven fabric. The results found, dry Dioscorea hispida Dennst successfully applied used as thickening agent, stable time to collected as 3 days. The textile printing quality and viscosity propertied equivalent as the industrial thickener at 10% of weight print paste (owp). The steam fixation applied for direct dye and reactive dye printing at 100c for 10 minutes, and gor flue fixation foracid dye and disperses dye and disperses dye printing at 150c for 5 minutes. The printed quality was good at rubbing fastness, true color appearance. Theresidual paste was removed completely in washing off process.Rajamangala University of Technology Phra Nakho

    āļāļēāļĢāļšāļģāļšāļąāļ”āļ™āđ‰āļģāđ€āļŠāļĩāļĒāļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļŸāļ­āļāļĒāđ‰āļ­āļĄāļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āđ‚āļŸāđ‚āļ•āđāļ„āļ•āļ•āļēāđ„āļĨāļ•āļīāļ„āļĢāđˆāļ§āļĄāļāļąāļšāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļš

    No full text
    āļĢāļēāļĒāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒ -- āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļĢāļēāļŠāļĄāļ‡āļ„āļĨāļžāļĢāļ°āļ™āļ„āļĢ, 2553Dye effluent treatment with photocatalytic technique and adsorption process had an objective for studying the combination process between Titanium dioxide and activated carbon from dye effluent. The dye effluents were prepared from the direct dye, reactive dye, acid dye, disperse dye, and basic dye. The effluent dyes from the completely dyeing process at 1 % owf initially. All of dye structures were azo. From the study, direct dye and reactive were successfully using combination process between photocatalytic technique and adsorption process whereas disperse dye favored in adsorption process. However, acid dye and basic were ignored in this experiment cause of they were a bit of dye concentration in their effluent. The optimum condition for direct dye was 10g/l Titanium dioxide for 6 hours and 5 g/l activated carbon for 6 hours continuously. Reactive dye was performed in continuous condition as 10g/l Titanium dioxide for 6 hours and 10 g/l activated carbon for 6 hours. Disperse dye was the particular process in adsorption by activated carbon 15 g/l for 4 hours. It was summarized that the treatment of photocatalytic technique and adsorption process were upon on the type of dye.Rajamangala University of Technology Phra Nakho

    āļāļēāļĢāļœāļĨāļīāļ•āļāļĢāļ°āļ”āļēāļĐāļœāļąāļāļ•āļšāļŠāļ§āļēāđ€āļžāļ·āđˆāļ­āļ‡āļēāļ™āļšāļĢāļĢāļˆāļļāļ āļąāļ“āļ‘āđŒ

    Get PDF
    āļĢāļēāļĒāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒ -- āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļĢāļēāļŠāļĄāļ‡āļ„āļĨāļžāļĢāļ°āļ™āļ„āļĢ, 2554āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļĢāļ·āđˆāļ­āļ‡āļāļēāļĢāļžāļąāļ’āļ™āļēāļāļĢāļ°āļ”āļēāļĐāļœāļąāļāļ•āļšāļŠāļ§āļēāđ€āļžāļ·āđˆāļ­āļ‡āļēāļ™āļšāļĢāļĢāļˆāļļāļ āļąāļ“āļ‘āđŒ āđ„āļ”āđ‰āđāļ™āļ§āļ„āļīāļ”āļˆāļēāļāļēāļĢāļ™āļģāļœāļąāļāļ•āļšāļŠāļ§āļēāļĄāļēāđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒ āđāļ•āđˆāļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļ—āļĩāđˆāļœāđˆāļēāļ™āļĄāļēāļžāļšāļ§āđˆāļēāļ›āļĢāļīāļĄāļēāļ“āđ€āļĒāļ·āđˆāļ­āļœāļąāļāļ•āļšāļŠāļ§āļēāļĄāļĩāļ™āđ‰āļ­āļĒāļˆāļķāļ‡āļĄāļĩāđāļ™āļ§āļ„āļīāļ”āļ—āļĩāđˆāļˆāļ°āđ€āļžāļīāđˆāļĄāļ›āļĢāļīāļĄāļēāļ“āđ€āļĒāļ·āđˆāļ­āļ”āđ‰āļ§āļĒāļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāļ·āļ­āđƒāļŠāđ‰āļˆāļēāļāļāļēāļĢāđ€āļāļĐāļ•āļĢāđ€āļŠāđˆāļ™āļŠāļąāļšāļ›āļ°āļĢāļ”āđāļĨāļ°āļāļĨāđ‰āļ§āļĒ āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļ—āļģāđ‚āļ”āļĒāļāļēāļĢāđ€āļ•āļĢāļĩāļĒāļĄāđ€āļŠāđ‰āļ™āđƒāļĒāļ”āđ‰āļ§āļĒāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļŪāļ”āļĢāļ­āļāđ„āļ‹āļ”āđŒāļ›āļĢāļīāļĄāļēāļ“ 10 g/1 āļ­āļļāļ“āļŦāļ āļđāļĄāļī 100 C āđ€āļ§āļĨāļē 3 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļŸāļ­āļāđ€āļĒāļ·āđˆāļ­āļ”āđ‰āļ§āļĒāđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āđ€āļ›āļ­āļĢāđŒāļ­āļ­āļāđ„āļ‹āļ”āļšāļ›āļĢāļīāļĄāļēāļ“ 5 g/1 āļ­āļļāļ“āļŦāļ āļđāļĄāļī 90 C āđ€āļ§āļĨāļē 30 āļ™āļēāļ—āļĩ āđāļĨāļ°āđ€āļžāļīāđˆāļĄāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ”āđ‰āļēāļ™āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāđ€āļĒāļ·āđˆāļ­āļ”āđ‰āļ§āļĒāļŠāļēāļĢāļŠāđˆāļ§āļĒāļāļĢāļ°āļˆāļēāļĒāđ€āļĒāļ·āđˆāļ­ (Acramin) 5 g/1 āđāļĨāļ°āļŠāļēāļĢāđ€āļžāļīāđˆāļĄāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡ (āļ™āđ‰āļģāļ–āđˆāļēāļ™āļāļąāļĄāļĄāļąāļ™āļ•āđŒ) 5%w/v āļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļāļĢāļ°āļ”āļēāļĐāļ—āļĩāđˆāļĄāļĩāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ•āđˆāļ­āļāļēāļĢāļŠāļģāđ„āļ›āđƒāļ™āļ‡āļēāļ™āļšāļĢāļĢāļˆāļļāļ āļąāļ“āļ‘āđŒāđ„āļ”āđ‰ āļ­āļ‡āļ„āđŒāļ›āļĢāļ°āļāļ­āļšāļ”āļąāļ‡āļ™āļĩāđ‰ āļ›āļĢāļīāļĄāļēāļ“āđ€āļŠāđ‰āļ™āđƒāļĒāļāļąāļāļ•āļšāļŠāļ§āļē 70 % āđ€āļŠāđ‰āļ™āđƒāļĒāļŠāļąāļšāļ›āļ°āļĢāļ” 10 % āđ€āļŠāđ‰āļ™āđƒāļĒāļāļĨāđ‰āļ§āļĒ 20 % āđ€āļžāļīāđˆāļĄ āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ”āđ‰āļēāļ™āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ•āļąāļ§āļ”āđ‰āļ§āļĒ Acramin 5 g/1 āđ€āļžāļīāđˆāļĄāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āđ‰āļ§āļĒ āļ™āđ‰āļģāļ–āđˆāļēāļ™āļāļąāļĄāļĄāļąāļ™āļ•āđŒ 5 %w/v āļāļĢāļ°āļ”āļēāļĐāļ—āļĩāđˆāđ„āļ”āđ‰āđ€āļ—āļĩāđˆāļĒāļĄāđ€āļ—āđˆāļēāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āļāļĢāļ°āļ”āļēāļĐāļ„āļĢāļēāļŸāļ—āđŒ K1 āļ„āļ·āļ­ āļ„āļ§āļēāļĄāļŦāļ™āļē 0.537 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢ āļ„āļ§āļēāļĄāļ•āđ‰āļēāļ™āļ—āļēāļ‡āđāļĢāļ‡āļ”āļąāļ™āļ—āļ°āļĨāļļ 35.4 āļāļīāđ‚āļĨāļ™āļīāļ§āļ•āļąāļ™āļ•āđˆāļ­āļ•āļēāļĢāļēāļ‡āđ€āļĄāļ•āļĢ āļ„āļ§āļēāļĄāļ„āļ‡āļ—āļ™āļ•āđˆāļ­āļāļēāļĢāļ‰āļĩāļ”āļ‚āļēāļ” 356 āļĄāļīāļĨāļĨāļīāļ™āļīāļ§āļ•āļąāļ™ āļ™āđ‰āļģāļŦāļ™āļąāļ 185 āļāļĢāļąāļĄāļ•āđˆāļ­āļ•āļēāļĢāļēāļ‡āđ€āļĄāļ•āļĢ āļĄāļĩāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ—āļĩāđˆāļˆāļ°āļ™āļģāđ„āļ›āđƒāļŠāđ‰āļ‡āļēāļ™āđ€āļ›āđ‡āļ™āļāļĨāđˆāļ­āļ‡āļŠāļīāļ™āļ„āđ‰āļēāļ—āļąāđˆāļ§āđ„āļ› āļŦāļĢāļ·āļ­āļāļĨāđˆāļ­āļ‡āļŠāļģāđ€āļĢāđ‡āļˆāļĢāļđāļ›Rajamangala University of Technology Phra Nakho
    corecore