331 research outputs found

    On Maximally Recoverable Codes for Product Topologies

    Full text link
    Given a topology of local parity-check constraints, a maximally recoverable code (MRC) can correct all erasure patterns that are information-theoretically correctable. In a grid-like topology, there are aa local constraints in every column forming a column code, bb local constraints in every row forming a row code, and hh global constraints in an (m×n)(m \times n) grid of codeword. Recently, Gopalan et al. initiated the study of MRCs under grid-like topology, and derived a necessary and sufficient condition, termed as the regularity condition, for an erasure pattern to be recoverable when a=1,h=0a=1, h=0. In this paper, we consider MRCs for product topology (h=0h=0). First, we construct a certain bipartite graph based on the erasure pattern satisfying the regularity condition for product topology (any a,ba, b, h=0h=0) and show that there exists a complete matching in this graph. We then present an alternate direct proof of the sufficient condition when a=1,h=0a=1, h=0. We later extend our technique to study the topology for a=2,h=0a=2, h=0, and characterize a subset of recoverable erasure patterns in that case. For both a=1,2a=1, 2, our method of proof is uniform, i.e., by constructing tensor product GcolGrowG_{\text{col}} \otimes G_{\text{row}} of generator matrices of column and row codes such that certain square sub-matrices retain full rank. The full-rank condition is proved by resorting to the matching identified earlier and also another set of matchings in erasure sub-patterns.Comment: 6 pages, accepted to National Conference of Communications (NCC) 201

    Role of epigenetic modifications in inhibitory immune checkpoints in cancer development and progression

    Get PDF
    A balance between co-inhibitory and co-stimulatory signals in the tumor microenvironment (TME) is critical to suppress tumor development and progression, primarily via maintaining effective immunosurveillance. Aberrant expression of immune checkpoints (ICs), including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), can create an immune-subversive environment, which helps tumor cells to evade immune destruction. Recent studies showed that epigenetic modifications play critical roles in regulating the expression of ICs and their ligands in the TME. Reports showed that the promoter regions of genes encoding ICs/IC ligands can undergo inherent epigenetic alterations, such as DNA methylation and histone modifications (acetylation and methylation). These epigenetic aberrations can significantly contribute to the transcriptomic upregulation of ICs and their ligands. Epigenetic therapeutics, including DNA methyltransferase and histone deacetylase inhibitors, can be used to revert these epigenetic anomalies acquired during the progression of disease. These discoveries have established a promising therapeutic modality utilizing the combination of epigenetic and immunotherapeutic agents to restore the physiological epigenetic profile and to re-establish potent host immunosurveillance mechanisms. In this review, we highlight the roles of epigenetic modifications on the upregulation of ICs, focusing on tumor development, and progression. We discuss therapeutic approaches of epigenetic modifiers, including clinical trials in various cancer settings and their impact on current and future anti-cancer therapies

    An evaluation of sorter induced cell stress (SICS) on peripheral blood mononuclear cells (PBMCs) after different sort conditions - are your sorted cells getting SICS?

    Get PDF
    Flow cytometry and fluorescence-activated cell sorting have become invaluable tools to analyze and isolate specific cell populations in a wide range of biomedical research and clinical applications. In countless approaches worldwide, scientists are using single cell analyses to better understand the significance and variation within different cellular populations, and fluorescence-activated cell sorting has become a major technique for cell isolation in both basic and clinical research. However, majority of available cell sorters are pressurized, droplet-based systems, which apply significant environmental pressure and shear stress to cells during sorting. Recently, the flow cytometry community has become increasingly aware about the potential negative effects this could have on sorted cells and the term "sorter induced cell stress" (SICS) has been proposed. However, up to date only a limited number of studies have investigated the effects of cell sorting on cell viability and function. Therefore, solid data on the effects of sheath pressure and nozzle size on survival and function of sorted cells are surprisingly rare. With this in mind, we sorted "CD4 " T-cells and "live" cells from human peripheral blood mononuclear cells (PBMCs) at different sort conditions and analyzed their quality before and after sorting in a series of assays. Here we present our findings in reference to cell viability and cell proliferation following sorting on different instruments (BD FACSAria III SORP and BD FACSJazz), utilizing different nozzle sizes (70 to 100 μm) and sheath pressure settings (20 to 70 psi). The results show no significant differences in cell viability and proliferation after the different tested sort conditions, but rather differences between individual experiments. These findings are evaluated and their potential significance in cell sorting experiments is discussed. [Abstract copyright: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.

    Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer

    Get PDF
    Increased numbers of myeloid-derived suppressor cells (MDSCs) are positively correlated with poor prognosis and reduced survivals of cancer patients. They play central roles in tumor immune evasion and tumor metastasis. However, limited data are available on phenotypic/transcriptomic characteristics of the different MDSCs subsets in cancer. These cells include immature (I-MDSCs), monocytic (M-MDSCs), and polymorphonuclear/granulocytic (PMN-MDSCs). Phenotypic characterization of myeloid subsets from 27 colorectal cancer (CRC) patients was assessed by flow cytometric analyses. RNA-sequencing of sorted I-MDSCs, PMN-MDSCs, and antigen-presenting cells (APCs) was also performed. We found that the levels of I-MDSCs and PMN-MDSCs were increased in tumor tissues (TT), compared with normal tissues (NT) in colorectal cancer. Our functional annotation analyses showed that genes associated with histone deacetylase (HDAC) activation- and DNA methylation-mediated transcriptional silencing were upregulated, and histone acetyl transferase (HAT)-related genes were downregulated in tumor-infiltrating I-MDSCs. Moreover, pathways implicated in cell trafficking and immune suppression, including Wnt, interleukin-6 (IL-6), and mitogen-activated protein kinase (MAPK) signaling, were upregulated in I-MDSCs. Notably, PMN-MDSCs showed downregulation in genes related to DNA methylation and HDAC binding. Using an ex vivo model, we found that inhibition of HDAC activation or neutralization of IL-6 in CRC tumor tissues downregulates the expression of genes associated with immunosuppression and myeloid cell chemotaxis, confirming the importance of HDAC activation and IL-6 signaling pathway in MDSC function and chemotaxis. This study provides novel insights into the epigenetic regulations and other molecular pathways in different myeloid cell subsets within the CRC tumor microenvironment (TME), giving opportunities to potential targets for therapeutic benefits

    Transcriptomic analyses of myeloid-derived suppressor cell subsets in the circulation of colorectal cancer patients

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) promote tumor immune evasion and favor tumorigenesis by activating various tumor-promoting downstream signals. MDSC expansion is evident in the circulation and tumor microenvironment of many solid tumors including colorectal cancer (CRC). We have recently reported the transcriptomic profiles of tumor-infiltrating MDSCs in CRC patients and uncovered pathways, which could potentially assist tumor progression. In this study, we sorted different subsets of circulating MDSCs in CRC patients and investigated their transcriptomic profiles in order to disclose pathways, which could potentially contribute to disease progression. The sorted subsets included polymorphonuclear/granulocytic MDSCs (PMN-MDSCs), immature MDSCs (I-MDSCs), and monocytic MDSCs (M-MDSCs). Our functional annotation analyses revealed that multiple pathways including DNA damage-, chemotaxis-, apoptosis-, mitogen-activated protein kinase-, transforming growth factor β-, and myeloid differentiation–related transcripts were higher in PMN-MDSCs, compared with monocytic antigen-presenting cells (APCs) or I-MDSCs. Furthermore, genes related to Janus kinase (JAK)–signal transducer and activator of transcription (STAT) were also elevated in PMN-MDSCs. These data suggest that upregulation of JAK-STAT pathway could trigger multiple downstream targets in PMN-MDSCs, which favor tumor progression. Additionally, we found that pathways including phosphatidyl inositol 3-kinase (PI3K), interleukin 6, and TGF-β in M-MDSCs and cell cycle–related pathways in I-MDSCs were upregulated, compared with monocytic APCs. Moreover, acetylation-related genes were upregulated in both PMN-MDSCs and M-MDSCs. This latter finding implicates that epigenetic modifications could also play a role in the regulation of multiple tumor-promoting genes in PMN-MDSCs and M-MDSCs. Taken together, this study reveals various signaling pathways, which regulate the function of MDSC subsets in the circulation of CRC patients. However, functional studies are warranted to support these findings

    Transcriptomic profiling of tumor-infiltrating CD4 + TIM-3 + T Cells reveals their suppressive, exhausted, and metastatic characteristics in colorectal cancer patients

    Get PDF
    T cell immunoglobulin mucin-3 (TIM-3) is an immune checkpoint identified as one of the key players in regulating T-cell responses. Studies have shown that TIM-3 is upregulated in the tumor microenvironment (TME). However, the precise role of TIM-3 in colorectal cancer (CRC) TME is yet to be elucidated. We performed phenotypic and molecular characterization of TIM-3+ T cells in the TME and circulation of CRC patients by analyzing tumor tissues (TT, TILs), normal tissues (NT, NILs), and peripheral blood mononuclear cells (PBMC). TIM-3 was upregulated on both CD4+ and CD3+CD4− (CD8+) TILs. CD4+TIM-3+ TILs expressed higher levels of T regulatory cell (Tregs)-signature genes, including FoxP3 and Helios, compared with their TIM-3− counterparts. Transcriptomic and ingenuity pathway analyses showed that TIM-3 potentially activates inflammatory and tumor metastatic pathways. Moreover, NF-κB-mediated transcription factors were upregulated in CD4+TIM-3+ TILs, which could favor proliferation/invasion and induce inflammatory and T-cell exhaustion pathways. In addition, we found that CD4+TIM-3+ TILs potentially support tumor invasion and metastasis, compared with conventional CD4+CD25+ Tregs in the CRC TME. However, functional studies are warranted to support these findings. In conclusion, this study discloses some of the functional pathways of TIM-3+ TILs, which could improve their targeting in more specific therapeutic approaches in CRC patients

    Bayesian analysis of bulk viscous matter dominated universe

    Full text link
    In our previous works, we have analyzed the evolution of bulk viscous matter dominated universe with a more general form for bulk viscous coefficient, ζ=ζ0+ζ1a˙a+ζ2a¨a˙\zeta=\zeta_{0}+\zeta_{1}\frac{\dot{a}}{a}+\zeta_{2}\frac{\ddot{a}}{\dot{a}} and also carried out the dynamical system analysis. We found that the model reasonably describes the evolution of the universe if the viscous coefficient is a constant. In the present work we are contrasting this model with the standard Λ\LambdaCDM model of the universe using the Bayesian method. We have shown that, even though the viscous model gives a reasonable back ground evolution of the universe, the Bayes factor of the model indicates that, it is not so superior over the Λ\LambdaCDM model, but have a slight advantage over it.Comment: 15 pages, 9 figure

    О некоторых тенденциях, осложнивших в начале ХХI века перспективы курортно-рекреационного развития Крыма

    Get PDF
    Целью работы явился анализ взаимовлияния различных факторов, сужающих потенциал туристско-рекреационной привлекательности Крыма, для уточнения возможностей объективного прогнозирования его перспективного развития

    Role of circular RNAs in colorectal tumor microenvironment

    Get PDF
    Circular RNAs (circRNAs) are a class of endogenous noncoding RNA, which were previously considered as a byproduct of RNA splicing error. Numerous studies have demonstrated the altered expression of circRNAs in organ tissues during pathological conditions and their involvements in disease pathogenesis and progression, including cancers. In colorectal cancer (CRC), multiple circRNAs have been identified and characterized as "oncogenic", given their involvements in the downregulation of tumor suppressor genes and induction of tumor initiation, progression, invasion, and metastasis. Additionally, other circRNAs have been identified in CRC and characterized as "tumor suppressive" based on their ability of inhibiting the expression of oncogenic genes and suppressing tumor growth and proliferation. circRNAs could serve as potential diagnostic and prognostic biomarkers, and therapeutic targets or vectors to be utilized in cancer therapies. This review briefly describes the dynamic changes of the tumor microenvironment inducing immunosuppression and tumorigenesis, and outlines the biogenesis and characteristics of circRNAs and recent findings indicating their roles and functions in the CRC tumor microenvironment. It also discusses strategies and technologies, which could be employed in the future to overcome current cancer therapy challenges associated with circRNAs. [Abstract copyright: Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

    A proprietary black cumin oil extract (Nigella sativa) (BlaQmax®) modulates stress-sleep-immunity axis safely: Randomized double-blind placebo-controlled study

    Get PDF
    ObjectiveStress, sleep, and immunity are important interdependent factors that play critical roles in the maintenance of health. It has been established that stress can affect sleep, and the quality and duration of sleep significantly impact immunity. However, single drugs capable of targeting these factors are limited because of their multi-targeting mechanisms. The present study investigated the influence of a proprietary thymoquinone-rich black cumin oil extract (BCO-5) in modulating stress, sleep, and immunity.MethodsA randomized double-blinded placebo-controlled study was carried out on healthy volunteers with self-reported non-refreshing sleep issues (n = 72), followed by supplementation with BCO-5/placebo at 200  mg/day for 90  days. Validated questionnaires, PSQI and PSS, were employed for monitoring sleep and stress respectively, along with the measurement of cortisol and melatonin levels. Immunity markers were analyzed at the end of the study.ResultsIn the BCO-5 group, 70% of the participants reported satisfaction with their sleep pattern on day 7 and 79% on day 14. Additionally, both inter- and intra- group analyses of the total PSQI scores and component scores (sleep latency, duration, efficiency, quality, and daytime dysfunction) on days 45 and 90 showed the effectiveness of BCO-5 in the improvement of sleep (p < 0.05). PSS-14 analysis revealed a significant reduction in stress, upon both intra (p < 0.001) and inter-group (p < 0.001) comparisons. The observed reduction in stress among the BCO-5 group, with respect to the placebo, was significant with an effect size of 1.19 by the end of the study (p < 0.001). A significant correlation was also observed between improved sleep and reduced stress as evident from PSQI and PSS. Furthermore, there was a significant modulation in melatonin, cortisol, and orexin levels. Hematological/immunological parameters further revealed the immunomodulatory effects of BCO-5.ConclusionBCO-5 significantly modulated the stress-sleep-immunity axis with no side effects and restored restful sleep
    corecore