6 research outputs found

    Лізиметр - унікальний інструмент для контролю взаємодії між компонентами середовища

    No full text
    Modern lysimeter facilities in connection with meteorological stations allow monitoring and evaluation of mutual basic components of the environment, such as water, air, soil and vegetation. Water is the most important component of the ecosystem and the component which connects all the other components. Therefore, we need to know the basic distribution and water balance in the different components of the environment to be able to interpret some processes in nature. Rainfall, which is the primary source of vital processes in the soil, is formed in the air. The amount of precipitation that gets into the soil and into the groundwater is affected by weather conditions. Primary distribution of rainwater is divided between infiltration, surface runoff, transpiration and evapotranspiration. The amount of water infiltrated into the soil and then evaporated by solar activity or activities of plants can be identified primarily by monitoring changes in weight. For this monitoring we use weighable lysimeter. This equipment with the monolith size of surface area 1 m2 and the depth of 1.5 m is able to follow online updates of weight of the 2 ton body with an accuracy of 100 g. When we add to quantification of leakages through the bottom layer, we obtain a comprehensive record of rainfall at the time in the natural environment of the individual components. The obtained data can be further interpreted in terms of the needs of hydrology, agriculture, and environmental studies, and according to the purpose and objectives for which we want to use them.Современные лизиметрические объекты в комплексе с метеорологическими станциями позволяют осуществлять контроль и оценку основных компонентов окружающей среды, таких как вода, воздух, почва и растительность. Вода является наиболее важным элементом экосистемы и элементом, который соединяет все другие компоненты. Поэтому, мы должны знать основное распределение и водный баланс в различных компонентах окружающей среды, чтобы уметь интерпретировать любой процесс в природе. Количество осадков, которое является основным источником жизненно важных процессов в почве, формируется в воздухе. Количество осадков, которое попадает в почву и грунтовые воды, зависит от погодных условий. Первичное распределение дождевой воды делится между инфильтрацией, поверхностным стоком, транспирацией и эвапотранспирацией. Количество воды, проникающее в почву, а потом испаряющее за счет солнечной активности или деятельности растений можно определить, в первую очередь, путем мониторинга изменений в весе. Для этого мониторинга мы используем весомый лизиметр. Это оборудование размером с монолит, площадь поверхности которого 1 м2 и глубина 1,5 м, способно следить в онлайн режиме за обновлением массы весом  в 2 тонны с точностью до 100 г. Когда мы добавляем к количественной оценке фильтрат нижнего слоя, мы получаем полноценный учет осадков в то же время в среде с отдельными компонентами. Полученные данные можно интерпретировать в терминах с точки зрения потребностей гидрологии, сельского хозяйства, окружающей среды и в соответствии с целями и задачами, для которых мы хотим их использовать.Сучасні лізиметричні об'єкти у зв'язку з метеорологічними станціями дозволяють здійснювати контроль та оцінку екосистемно пов'язаних основних компонентів довкілля, таких як вода, повітря, ґрунт і рослинність. Вода є найбільш важливим компонентом екосистеми та елементом, який поєднує всі інші компоненти. Тому необхідне знання щодо основного розподілу і водного балансу у різних компонентах довкілля, щоб інтерпретувати процеси в природі. Кількість опадів, що є основним джерелом життєво важливих процесів у ґрунті, формується в повітрі. Кількість опадів, що потрапляє в ґрунт і ґрунтові води, залежить від погодних умов. Первинний розподіл дощової води ділиться між інфільтрацією, поверхневим стоком, транспірацією та евапотранспірацією. Кількість води, що проникає в ґрунт, а потім випаровується за рахунок сонячної активності або діяльності рослин, можна визначити, у першу чергу, шляхом моніторингу змін у вазі. Для цього моніторингу ми використовуємо вагомий лізиметр. Це обладнання розміром з моноліт,  площа поверхні якого 1 м2 і глибина 1,5 м, здатне стежити в онлайн режимі за оновленням ваги маси в 2 тони з точністю до 100 г. Коли ми додаємо до кількісної оцінки фільтрат нижнього шару, ми отримуємо повноцінний облік опадів в довкіллі щодо окремих компонентів. Отримані дані можна інтерпретувати з точки зору потреб гідрології, сільського господарства, довкілля та відповідно до цілей і завдань, для яких ми хочемо їх використовувати

    Evaluation of precipitation measurements using a standard rain gauge in relation to data from a precision lysimeter

    No full text
    The construction of modern lysimeters with a precise weighing system made it possible to achieve an unprecedented accuracy of precipitation measurement. This study compares two methods of measuring precipitation in the conditions of the humid continental climate of the Eastern Slovakian Lowland (Slovakia): measurement using a standard tipping-bucket rain gauge vs. precision weighable lysimeter. Data from the lysimeter were used as a reference measurement. The comparison period lasted four years (2019–2022). Only liquid rainfall was compared. The rain gauge was found to underestimate precipitation compared to the lysimeter. Cumulative precipitation for the entire monitored period captured by the rain gauge was 2.8% lower compared to lysimeter measurements. When comparing hourly and daily totals of precipitation and precipitation events, a very high degree of agreement was detected (r2 > 0.99; RMSE from 0.22 to 0.51 mm h–1). A comparison based on precipitation intensity showed a decreasing trend in measurement accuracy with increasing precipitation intensity. This tendency has an exponential course. With increasing intensity of precipitation, increasing intensity of wind was also recorded. In order to correct measurement errors, simple correction method was proposed, which helped to partially eliminate the inaccuracies of the rain gauge measurement

    Comparison of different chamber techniques for measuring soil CO2 efflux

    No full text
    Twenty chambers for measurement of soil CO2 efflux were compared against known CO2 fluxes ranging from 0.32 to 10.01 molCO2 m−2 s−1 and generated by a specially developed calibration tank. Chambers were tested on fine and coarse homogeneous quartz sand with particle sizes of 0.05–0.2 and 0.6 mm, respectively. The effect of soil moisture on chamber measurementswas tested by wetting the fine quartz sand to about25%volumetricwater content. Non-steady-state through-flow chambers either underestimated or overestimated fluxes from−21 to+33% depending on the type of chamber and the method of mixing air within the chamber’s headspace. However, when results of all systems tested were averaged, fluxes were within 4% of references. Non-steady-state on-through-flow chambers underestimated or overestimated fluxes from –35 to +6%.On average, the underestimation was about 13–14% on fine sand and 4% on coarse sand. When the length of the measurement period was increased, the underestimation increased due to the rising concentration within the chamber headspace, which reduced the diffusion gradient within the soil. Steady-state through-flow chambers worked almost equally well in all sand types used in this study. They overestimated the fluxes on average by 2–4%. Overall, the reliability of the chambers was not related to the measurement principle per se. Even the same chambers, with different collar designs, showed highly variable results. The mixing of air within the chamber can be a major source of error. Excessive turbulence inside the chamber can cause mass flow of CO2 from the soil into the chamber. The chamber headspace concentration also affects the flux by altering the concentration gradient between the soil and the chamber
    corecore