3 research outputs found
Insights into Silica Bilayer Hydroxylation and Dissolution
Hydroxylation and dissolution of well-structured silica bilayer films grown on a ruthenium single-crystal support (SiO<sub>2</sub>/Ru(0001)) was studied by temperature programmed desorption and X-ray photoelectron spectroscopy (XPS). Water desorption signals from SiO<sub>2</sub>/Ru(0001) hydroxylated by electron-bombardment of adsorbed ice at 100 K were found to be comparable to those of hydroxylated bulk silica samples and attributed to adsorbed molecular water and silanol groups (vicinal and terminal). Isotopic exchange between <sup>18</sup>O-labeled SiO<sub>2</sub> and <sup>16</sup>O-labeled water suggests the occurrence of dynamic siloxane bond cleavage and re-formation during electron bombardment. Together with the observed strong dependence of hydroxylation activity on ice coverage, which is found to increase with increasing thickness of the ice layer, a hydroxylation mechanism based on the activation of siloxane bonds by water radiolysis products (e.g. hydroxyls) and subsequent water dissociation is proposed. Dissolution rates obtained from the attenuation of Si 2p and O1s XPS signal intensities upon exposure of bilayer SiO<sub>2</sub>/ Ru(0001) to alkaline conditions at various temperatures are in agreement with the proposed rate model for bulk silica dissolution by OH<sup>-</sup> attack and provide further corroboration of the proposed hydroxylation mechanism