5 research outputs found

    Using Landsat and Sentinel-2 Data for the Generation of Continuously Updated Forest Type Information Layers in a Cross-Border Region

    Get PDF
    From global monitoring to regional forest management there is an increasing demand for information about forest ecosystems. For border regions that are closely connected ecologically and economically, a key factor is the cross-border availability and consistency of up-to-date information such as the forest type. The combination of existing forest information with Earth observation data is a rational method and can provide valuable contribution to serve the increased information demand on a transnational level. We present an approach for the remote sensing-based generation of a transnational and temporally consistent forest type information layer for the German federal states of Rhineland-Palatinate and Saarland, and the Grand Duchy of Luxembourg. Existing forest information data from different countries were merged and combined with suitable vegetation indices derived from Landsat 8 and Sentinel-2 imagery acquired in early spring. An automated bootstrap-based approximation of the optimum threshold for the distinction of “broadleaved” and “coniferous” forest was applied. The spatially explicit forest type information layer is updated annually depending on image availability. Overall accuracies between 79 and 96 percent were obtained. Every spot in the region will be updated successively within a period of expectably three years. The presented approach can be integrated in fully automated processing chains to generate basic forest type information layers on a regular basis.Peer Reviewe

    Potential of Sentinel-1 Data for Spatially and Temporally High-Resolution Detection of Drought Affected Forest Stands

    No full text
    A timely and spatially high-resolution detection of drought-affected forest stands is important to assess and deal with the increasing risk of forest fires. In this paper, we present how multitemporal Sentinel-1 synthetic aperture radar (SAR) data can be used to detect drought-affected and fire-endangered forest stands in a spatially and temporally high resolution. Existing approaches for Sentinel-1 based drought detection currently do not allow to deal simultaneously with all disturbing influences of signal noise, topography and visibility geometry on the radar signal or do not produce pixel-based high-resolution drought detection maps of forest stands. Using a novel Sentinel-1 Radar Drought Index (RDI) based on temporal and spatial averaging strategies for speckle noise reduction, we present an efficient methodology to create a spatially explicit detection map of drought-affected forest stands for the year 2020 at the Donnersberg study area in Rhineland-Palatinate, Germany, keeping the Sentinel-1 maximum spatial resolution of 10 m Ă— 10 m. The RDI showed significant (p 2 = 0.9678) with the increasing monthly mean temperatures in 2020. In summary, this study demonstrates that Sentinel-1 data can play an important role for the timely detection of drought-affected and fire-prone forest areas, since availability of observations does not depend on cloud cover or time of day

    Assessing the Suitability of Future Multi- and Hyperspectral Satellite Systems for Mapping the Spatial Distribution of Norway Spruce Timber Volume

    No full text
    The availability of accurate and timely information on timber volume is important for supporting operational forest management. One option is to combine statistical concepts (e.g., small area estimates) with specifically designed terrestrial sampling strategies to provide estimations also on the level of administrative units such as forest districts. This may suffice for economic assessments, but still fails to provide spatially explicit information on the distribution of timber volume within these management units. This type of information, however, is needed for decision-makers to design and implement appropriate management operations. The German federal state of Rhineland-Palatinate is currently implementing an object-oriented database that will also allow the direct integration of Earth observation data products. This work analyzes the suitability of forthcoming multi- and hyperspectral satellite imaging systems for producing local distribution maps for timber volume of Norway spruce, one of the most economically important tree species. In combination with site-specific inventory data, fully processed hyperspectral data sets (HyMap) were used to simulate datasets of the forthcoming EnMAP and Sentinel-2 systems to establish adequate models for estimating timber volume maps. The analysis included PLS regression and the k-NN method. Root Mean Square Errors between 21.6% and 26.5% were obtained, where k-NN performed slightly better than PLSR. It was concluded that the datasets of both simulated sensor systems fulfill accuracy requirements to support local forest management operations and could be used in synergy. Sentinel-2 can provide meaningful volume distribution maps in higher geometric resolution, while EnMAP, due to its hyperspectral coverage, can contribute complementary information, e.g., on biophysical conditions
    corecore