150 research outputs found
Inexperienced versus experienced mothers\u27 and preschool teachers\u27 strategies for providing persuasive messages to young children
This chapter compares the message strategies of parents and preschool teachers for persuading young children and reveals the effect of parenting and teaching experience on strategies adopted. The authors asked 454 mothers and 181 preschool teachers to select one of two framed messages to enhance children’s self-regulation ability. The results showed that, compared with no difference in message selection between inexperienced mothers and inexperienced preschool teachers, the strategy of experienced teachers shifted to a more positively-framed approach, whereas that of experienced mothers shifted to a more negatively-framed approach. The contrasting results in message strategy that changed with the parenting/teaching experience support the self-regulatory theory, in which caregivers develop children’s self-regulation ability through regulatory focus messages. This has implications for the development of parenting and teaching styles
Offshore-origin warm water inflows toward Totten Ice Shelf, East Antarctica
The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Thu. 5 Dec. / 2F Auditorium , National Institute of Polar Researc
Association of plasma thioredoxin-1 with renal tubular damage and cardiac prognosis in patients with chronic heart failure
AbstractBackgroundThioredoxin-1 (Trx-1) is an abundant 12.5kDa redox protein expressed in almost all eukaryotic cells that protect against the development of heart failure and kidney dysfunction. Plasma Trx-1 levels are considered as a reliable marker for oxidative stress. However, it remains to be determined whether plasma Trx-1 levels can predict cardiac prognosis in patients with chronic heart failure (CHF).Methods and resultsWe measured plasma Trx-1 levels and urinary β2-microglobulin–creatinine ratio (UBCR), a marker for renal tubular damage, in 156 consecutive patients with CHF and 17 control subjects. The patients were prospectively followed for a median follow-up period of 627 days and 46 cardiac events were observed. The patients with cardiac events had significantly higher plasma Trx-1 levels and UBCR levels than the cardiac event-free patients. Multivariate Cox proportional hazard analysis revealed that an elevated Trx-1 level was independently associated with poor outcome in patients with CHF after adjustment for confounding factors (hazard ratio, 1.74; 95% confidence interval, 1.33–2.29; p<0.0001). UBCR was increased with higher plasma Trx-1 levels. Kaplan–Meier analysis demonstrated that the highest Trx-1 tertile was associated with the highest risk of cardiac events.ConclusionPlasma Trx-1 level was associated with renal tubular damage and cardiac prognosis, suggesting that it could be a useful marker to identify patients at high risk for comorbid heart failure and renal tubular damage
An immune-adrenergic pathway induces lethal levels of platelet-activating factor in mice
Acute immune responses with excess production of cytokines, lipid/chemical mediators, or coagulation factors, often result in lethal damage. In addition, the innate immune system utilizes multiple types of receptors that recognize neurotransmitters as well as pathogen-associated molecular patterns, making immune responses complex and clinically unpredictable. We here report an innate immune and adrenergic link inducing lethal levels of platelet-activating factor. Injecting mice with toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS), cell wall N-glycans of Candida albicans, and the α₂-adrenergic receptor (α₂-AR) agonist medetomidine induces lethal damage. Knocking out the C-type lectin Dectin-2 prevents the lethal damage. In spleen, large amounts of platelet-activating factor (PAF) are detected, and knocking out lysophospholipid acyltransferase 9 (LPLAT9/LPCAT2), which encodes an enzyme that converts inactive lyso-PAF to active PAF, protects mice from the lethal damage. These results reveal a linkage/crosstalk between the nervous and the immune system, possibly inducing lethal levels of PAF
Regulation of reactive oxygen species and phytohormones in osmotic stress tolerance during seed germination in indica rice
Climate change due to global warming is now affecting agricultural production worldwide. In rice, one of the most important crops, water limitation due to irregular rainfall in rainfed lowlands during crop growth limits yield. Dry direct-sowing has been proposed as a water-efficient approach to cope with water stress during rice growth, but poor seedling establishment due to drought during germination and emergence is a problem. Here, we germinated indica rice cultivars Rc348 (drought tolerant) and Rc10 (drought sensitive) under osmotic stress induced by PEG to elucidate mechanisms of germination under drought. Rc348 had higher germination rate and germination index under severe osmotic stress of −1.5 MPa, above those of Rc10. Rc348 showed up-regulated GA biosynthesis, down-regulated ABA catabolism, and up-regulated α-amylase gene expression in imbibed seeds under PEG treatment compared to that of Rc10. During germination, reactive oxygen species (ROS) play important roles in antagonism between gibberellic acid (GA) and abscisic acid (ABA). Embryo of Rc348 treated with PEG had significantly greater expression of NADPH oxidase genes and higher endogenous ROS levels, together with significantly increased endogenous GA1, GA4 and ABA contents compared to that of Rc10. In aleurone layers treated with exogenous GA, expression of α-amylase genes was higher in Rc348 than in Rc10, and expression of NADPH oxidase genes was enhanced with significantly higher ROS content in Rc348, suggesting higher sensitivity of GA to ROS production and starch degradation in aleurone cells of Rc348. These results suggest that the osmotic stress tolerance of Rc348 is due to enhancement of ROS production, GA biosynthesis, and GA sensitivity, resulting in a higher germination rate under osmotic stress
An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function
NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication
- …