6 research outputs found

    Investigation of entanglement and Heisenberg's uncertainty relation in the neutral kaon system

    Get PDF
    Diese Diplomarbeit schneidet zwei Gebiete der Physik an: die Teilchenphysik und die Grundlagen der Quantenmechanik. Verbunden werden die Teilgebiete durch das neutrale Kaonensystem, welches eine der interessantesten und aufregendsten Eigenschaften der Quantenmechanik vorweisen kann: Verschr¨ankung. Verschr¨ankung ist ein heftig diskutiertes Thema, da es eigenartige Konsequenzen mit sich bringt sowie neuartige Verwendungen erm¨oglicht (z.B. Quantenkryptographie). Das Ph¨anomen der Verschr¨ankung konnte in verschiedenen Systemen beobachtet werden, was eventuell auch auf biologische Systeme ausgeweitet werden kann. In dieser Arbeit legen wir den Schwerpunkt auf ein massives verschr¨anktes System, das System der neutralen Kaonen, und untersuchen quanteninformationstheoretische Fragen. Das System oszilliert zwischen Teilchen- und Antiteilchen-Zustand (sogenannte Strangeness Oszillation). Weiters ist es ein zerfallendes System. Dar¨uber hinaus verletzt es die CP Symmetrie (Ladungssymmetrie C und Parit¨at P, Nobelpreis 1980), d.h. es beweist, dass es einen Unterschied zwischen derWelt der Materie und der Welt der Antimaterie gibt. Die Bestimmung des Ursprungs dieser Symmetrieverletzung stellt noch immer ein ungel¨ostes Problem in der Teilchenphysik dar. Wir werden verschiedene Herangehensweisen zur Beschreibung der Ph¨anomenologie des neutralen Kaonen Systems - welches sich betr¨achlich von stabilen Systemen unterscheidet - vorstellen und diskutieren, um sie in den Bell Ungleichungen und in Heisenberg’s Unsch¨arferelation in der entropischen Version anzuwenden. Desweiteren zeigen wir, dass die CP Verletzung Unsicherheit in die Dynamik bringt.This thesis covers two distinct fields in physics: Particle Physics and the Foundations of Quantum Mechanics. The crossover is made by the neutral kaon system, which can be equipped with one of the most exciting attributes of quantum mechanics: Entanglement. Entanglement is a hot discussed topic as it leads to peculiar consequences and has been shown to have novel applications (e.g. quantum cryptography). It has been found in many different physical systems and possibly also in biological systems. In this work we focus on a massive entangled system, the neutral kaon system, and discuss quantum information theoretic questions. This system is oscillating between its particle and antiparticle state (so called strangeness oscillation), and is decaying. Moreover, it violates the CP symmetry (charge symmetry C and parity symmetry P, nobel prize 1980), i.e. it proves that there is a difference between a world of matter and a world of antimatter. The origin of this symmetry violation is still a big open problem in Particle Physics. We present and discuss different frameworks to describe the phenomenology of the neutral kaon system - which is considerably different to stable systems - and apply them to analyze Bell inequalities and the Heisenberg uncertainty principle in the entropic version. In particular, we show that the CP violation introduces uncertainty to the dynamics

    Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics

    Full text link
    An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum feature of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page

    A Computable Criterion for Partial Entanglement in Continuous Variable Quantum Systems

    No full text
    A general and computable criterion for k-(in)separability in continuous multipartite quantum systems is presented. The criterion can be experimentally implemented with a finite and comparatively low number of local observables. We discuss in detail how the detection quality can be optimised
    corecore