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Abstract

This thesis covers two distinct fields in physics: Particle Physics and the Foun-
dations of Quantum Mechanics. The crossover is made by the neutral kaon sys-
tem, which can be equipped with one of the most exciting attributes of quantum
mechanics: Entanglement. Entanglement is a hot discussed topic as it leads to pe-
culiar consequences and has been shown to have novel applications (e.g. quantum
cryptography). It has been found in many different physical systems and possibly
also in biological systems.

In this work we focus on a massive entangled system, the neutral kaon system,
and discuss quantum information theoretic questions. This system is oscillating
between its particle and antiparticle state (so called strangeness oscillation), and is
decaying. Moreover, it violates the CP symmetry (charge symmetry C and parity
symmetry P, nobel prize 1980), i.e. it proves that there is a difference between a
world of matter and a world of antimatter. The origin of this symmetry violation
is still a big open problem in Particle Physics. We present and discuss different
frameworks to describe the phenomenology of the neutral kaon system - which is
considerably different to stable systems - and apply them to analyze Bell inequalities
and the Heisenberg uncertainty principle in the entropic version. In particular, we
show that the CP violation introduces uncertainty to the dynamics.
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Kurzfassung

Diese Diplomarbeit schneidet zwei Gebiete der Physik an: die Teilchenphysik und
die Grundlagen der Quantenmechanik. Verbunden werden die Teilgebiete durch das
neutrale Kaonensystem, welches eine der interessantesten und aufregendsten Eigen-
schaften der Quantenmechanik vorweisen kann: Verschränkung. Verschränkung ist
ein heftig diskutiertes Thema, da es eigenartige Konsequenzen mit sich bringt sowie
neuartige Verwendungen ermöglicht (z.B. Quantenkryptographie). Das Phänomen
der Verschränkung konnte in verschiedenen Systemen beobachtet werden, was eventuell
auch auf biologische Systeme ausgeweitet werden kann.

In dieser Arbeit legen wir den Schwerpunkt auf ein massives verschränktes Sys-
tem, das System der neutralen Kaonen, und untersuchen quanteninformationsthe-
oretische Fragen. Das System oszilliert zwischen Teilchen- und Antiteilchen-Zustand
(sogenannte Strangeness Oszillation). Weiters ist es ein zerfallendes System. Darüber
hinaus verletzt es die CP Symmetrie (Ladungssymmetrie C und Parität P, Nobel-
preis 1980), d.h. es beweist, dass es einen Unterschied zwischen der Welt der Materie
und der Welt der Antimaterie gibt. Die Bestimmung des Ursprungs dieser Symme-
trieverletzung stellt noch immer ein ungelöstes Problem in der Teilchenphysik dar.
Wir werden verschiedene Herangehensweisen zur Beschreibung der Phänomenologie
des neutralen Kaonen Systems - welches sich beträchlich von stabilen Systemen un-
terscheidet - vorstellen und diskutieren, um sie in den Bell Ungleichungen und in
Heisenberg’s Unschärferelation in der entropischen Version anzuwenden. Desweit-
eren zeigen wir, dass die CP Verletzung Unsicherheit in die Dynamik bringt.
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1 Introduction

1.1 History

In the very beginning of the 20th century, ”particle physics” had to deal with three
different types of particles: the 1897 discovered electron [1], the proton, which was
discovered in 1919 by Rutherford [2] and the photon, which was 1905 ”invented” by
Einstein [3] (with pioneer work by Planck [4]) in order to describe the photoelectric
effect. It took a time until the physicist community accepted the photon concept
and understood its implementation. However, after setting up quantum field theory,
the photon was put in its place. In this way, the electromagnetic interaction, for
example, was explained by a quantized field - namely in form of photons. This way
of thinking was also used when a specific problem in nuclear physics arised: protons
- the constituents of nucleus (along with neutrons) - have the same charge; how and
why do they not fly apart? What was this ”strong force” about that was holding
the protons in the nucleus together?

In 1934, Yukawa postulated, similar to the quantized electromagnetic field, a the-
ory, in which not photons were the quantized particles for the strong force field, but
(due to the small range) a particle with a mass approximately 300 times the electrons
mass, which he called meson [5] (from a Greek word standing for ”middleweight”
or ”intermediate”, while the electron is a lepton, which stands for ”shortweight”,
baryons for ”heavyweight”). After an exhausting search (at first one believed that
the 1937 discovered muon was the Yukawa meson) the meson was finally found in
1947 [7]. Nowadays, it is called pion.

In the interim, physicists were engaged with other problems and questions: from
the Dirac equation one obtained - when using the relativistic formula for energy
E2−p2c2 = m2c4 - two solutions. There was for every solution with positive energy
(E = +

√

p2c2 +m2c4) the corresponding negative energy (E = −
√

p2c2 +m2c4).
This could not be understood. However, Feynman, together with Stueckelberg for-
mulated an interpretation of a new type of particles, carrying the negative energy:
the antiparticles. According to them, every particle has its antiparticle, which car-
ries the same properties apart from the opposite additive quantum numbers like
charge, baryon number, lepton number etc., while the nonadditive quantum num-
bers like spin, mass, lifetime etc. remain the same. The antiproton, for example, has
the same mass, spin and magnetic moment as the proton, but it’s electric charge is
given by -1e. The term ”anti” is of course part of a convention; ”particles” are those
which can be identified as common matter, while antimatter can not be observed
easily in nature.

So the new concept enlarged the particle-zoo by a factor of 2 (nearly - some
particles are their own antiparticles). It took a while until the particle - antipar-
ticle concept was accepted, and when the positron was discovered in 1931, no one
doubted the solutions and interpretation, respectively, of the Dirac equation.

In this way, in 1947, one thought that the particle physics world was more or less
undestood, since all the - at that time - known phenomena could be explained. Then
in December 1947 something strange happened.
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Figure 1.1: The first strange particle. Cosmic rays hit (from the upper left side) a 3cm thick
lead slab, thereby producing a K0, which then decays into a pair of two charged pions. By kind
permission of the publisher ”Nature”

Rochester and Butler published [8] the cloud chamber picture shown above (Fig.
1.1), where cosmic rays hit a lead slab, creating a neutral particle, which then
produces the V-shaped decay into two particles. The authors showed then that
these two charged particles were the pions π+ and π−, respectively. So there was
without doubt a new particle, having at least twice the mass of a pion, which one
names kaon nowadays. According to this, the decay of this particle has the following
form:

K0 −→ π+ + π− (1.1)

Two years later, in 1949, Powel published another picture, showing the decay of
a charged kaon, i.e.

K+ −→ π+ + π+ + π−, (1.2)

and it took a little time until one found out that the two decaying particles ((1.1)
and (1.2)) were different sorts of only one kind of particle, namely a charged and an
uncharged version.

1.2 Kaon Properties

Although the investigation of kaons in this thesis is not yet profound, it is useful
to bring in a table carrying the most important properties of kaons together. The
appearance of the K-long and K-short, respectively, will be explained in the following
sections. Yet it is important to show that there is more behind the concept than
just one particle we call kaon.
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Particle
Name

Particle
Symbol

Antiparticle
Symbol

Quark
content
(particle)

Rest Mass
(MeV/c2)

Kaon K+ K− us̄ 493.677± 0.016
Kaon K0 K̄0 ds̄ 497.614± 0.024

K-Short KS Self ds̄−sd̄√
2

-

K-Long KL Self ds̄+sd̄√
2

-

Table 1: Remarks: there is no definite lifetime for the eigenstates of the strong interaction, i.e.
K0 and K̄0. Furthermore, concerning the mass of K-Long and K-Short one can only declare a
mass difference between them. However, it is important to stress that there is also a difference in
lifetime between K-Short and K-Long (see below)

Particle Name IG JPC S C B Mean Lifetime (s)

Kaon K+ 1/2 0− 1 0 0 1.2380± 0.0021× 10−8

Kaon K0 1/2 0− 1 0 0 -
K-Short KS 1/2 0− - 0 0 8.953± 0.005× 10−11

K-Long KL 1/2 0− - 0 0 5.116± 0.020× 10−8

Table 2: Further properties.

But what was so strange about the kaons?

While the production rate of kaons is only a few percent of the pion’s production,
kaons possess a long lifetime. The neutral pion π0, for example, has a mean life-
time in order of 10−17s, while kaons surprise by having a mean lifetime in order of
10−8s, which in particle physics is a huge time. In experiments, therefore, the kaons
can travel distances of centimeters (and even meters) in laboratory and thus can
be measured directly (e.g. in a cloud chamber), while particles with a far smaller
lifetime can not be observed easily.

In the next section we will describe the kaons using the quantum mechanical
formalism.
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2 The Quantum Mechanics of Kaons

After a short mathematical introduction we define kaon and antikaon states as the
eigenvectors of the strangeness operator S. We discuss kaon production and their
reactions. Furthermore we are going to introduce the K-short/K-long concept and
compare kaons with photons. The most important and subtle part of the section
will be a formalism of the decay property and therewith the time evolution, which is
needed for a description of entanglement.

2.1 Basics

2.1.1 Mathematical Requirement

Since the mathematics in this thesis belongs more or less to the standard repertoire
of quantum mechanics, only the most important concepts will be reviewed.

• Hilbert space: In plain words, a Hilbert space is an abstract vector space
equipped with an inner product. For this thesis it is important to stress a
postulate of quantum mechanics stating that the tensor product of two Hilbert
spaces HA and HB factorizes the dimension of the new Hilbert space Htot, i.e.

Htot = HA ⊗HB ⇒ dtot = dA · dB, (2.1)

where dA and dB are the dimensions of the Hilbertspaces HA and HB, respec-
tively.

• Notation of the Tensor Product: the proper notation (in the bracket form) has
the form |ψ〉 ⊗ |φ〉, or even |ψ〉A ⊗ |φ〉B, reminding that |ψ〉A belongs to the
Hilbert space HA, while |φ〉B belongs to HB. For convenience, one equivalently
uses

|ψA〉 |φB〉 , |ψ〉 |φ〉 , |ψ, φ〉
or even

|ψφ〉 . (2.2)

In this thesis all notations will be used. The notation will sometimes be
switched, if necessary, to point out important passages of equations.

• Direct Sum: when rolling out the decay of kaons, the mathematical operation
of the direct sum will be required. It has the form

v1 ⊕ v2, (2.3)

with v1 ∈ V1 and v2 ∈ V2, where V1, V2 are two vector spaces. It is important
to stress that in our case V1 and V2 are two orhogonal subspaces of a greater
Hilbert space with the dimension dV1 + dV2 .

• Bloch Sphere: when dealing with qubits, i.e.

|ψ〉 = a |0〉+ b |1〉 , (2.4)

where a, b ∈ C and |a|2+|b|2 = 1, we may use the parametrization a = cos θ
2
, b =

eiφ sin θ
2
, so that the vector |ψ〉 takes the form

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (2.5)

12



giving us the ability to visualize the qubit within the Bloch sphere with the
spherical coordinates (sin θ cosφ, sin θ sinφ, cos θ):

�

�

�

�

�

�

�

�

Figure 2.1: The Bloch sphere. Each point of the sphere represents a state. Pure states are located
on the surface, whereas mixed states build the interior of the Bloch sphere.

After the small retrospection (additional terms should be evident from the con-
text) we will start in introducing some common terms of particle physics.

2.1.2 Strangeness

Strangeness S is a quantum number introduced in order to describe the strange be-
havior of certain particles. It was suggested by Murray Gell-Mann [10] and Kazuhiko
Nishijima [9] in the 50ies of the last century after numerous observations of the de-
cay of kaons and other baryons containing the unknown strange quark at the time.
In experiments, one noticed that these so called hyperons (baryons containing the
strange quark) and strange mesons had a far greater lifetime than one would expect
due to their mass. Gell-Mann and Nishijima therefore introduced a new quantity,
the strangeness number S:

S = 2

(

Q− I3 −
B

2

)

. (2.6)

Here, B is the baryon number assigning that every baryon gets B = 1, while the
antibaryon gets B = −1. Non-baryons - like bosons or fermions - get B = 0. Q is
the electric charge. I3 is the third component of the isospin introduced a few years
before in order to describe the fact that strong force does not distinguish between
protons and neutrons.
All experiments suggest that B and Q are exactly conserved. However, Gell-Mann
and Nishijima supposed that I3 was not conserved in all interactions. As we know
now, the particles observed in Fig. 1.1 where produced by the strong force but
decayed over the weak force: since the strangeness number S is conserved during
the strong (and EM) interactions, but is not conserved for the weak interactions, the
observed particles could not decay by the strong interactions. As a consequence of
this, they could only decay by the weak interaction, which is much slower and thus
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provided the particles’ uncommonly long lifetime. Below, we find a compilation of
particles, which decay or interact by weak interaction:

I3
B S I −1 − 1

2
0 + 1

2
+1

1 0 1

2
n p

1 -1 0 Λ0

0 0 1 π− π0 π+

0 +1 1

2
K0 K+

0 -1 1

2
K− K̄0

1 -1 1 Σ− Σ0 Σ+

Table 3: Particles which decay or interact by weak interaction

Nowadays the strangeness number S is defined by the strange (and antistrange)
quarks, i.e.

S = − (ns − n̄s) , (2.7)

with ns standing for the number of the strange quarks and n̄s for strange antiquarks.

2.1.3 CP symmetry & CP violation

CP is an operation composed of C (charge conjugation) and P (parity):

• Charge conjugation C: the operator C turns a particle into its antiparticle by
simply changing the sign of its charge (electric, color,..), while leaving other
properties, e.g. mass, energy, spin, momentum etc. unchanged.

• Parity P: the operator P causes a reflection in a spatial plane, thus P |Ψ(~r)〉 =
|Ψ(−~r)〉 - provided that there does exist a reflection.

In the first half of the previous century physicists assumed that physics is in-
variant under mirror inversion. This symmetry of parity seemed to be valid when
considering early experiments, since they were concerned only with strong force,
electro-magnetism and gravity. However, in particle decays (mostly weak force in-
volved) one noticed slight ”anomalies”: some reactions did not occur as often as
their mirror images. The parity violation had been found (1957, when observing
cobalt-60 decay).
Appalled and surprised physicists soon picked a new ”real” symmetry (what they
believed to be a new symmetry): the combination of parity P and the particle-
antiparticle swap C. Since C-symmetry and P-symmetry are (even maximally) in-
dividually violated, one thought that these two effects should neutalize each other.
Thus, a particle exchanged into an antiparticle and observed through a mirror should
underlie the same physics, differently stated: it shows the same behavior as the cor-
responding particle. This was in agreement with all experimental data and thus the
problem was considered to be solved.
For that reason it was an even greater shock when one found in 1964 in experiments
that the CP symmetry is violated, too, and this by particles, in which we do take
great interest: the kaons.

In conclusion, it is important to stress that the CP violation is caused by the
weak force, alternatively spoken when dealing with heavy quarks and decay. After
the short introduction - CP violation will be investigated more precisely - we will
start focussing on kaons and the description of kaons.

14



2.2 Describing Kaons

2.2.1 Definition of the strangeness and CP eigenstates

After introducing the strangeness we can define kaons being the eigenvectors of the
strangeness operator S. More precisely, the strangeness quantum number +1, -1
serves to differ between the kaon K0 and the antikaon K̄0, namely

S
∣

∣K0
〉

= +
∣

∣K0
〉

S
∣

∣K̄0
〉

= −
∣

∣K̄0
〉

. (2.8)

The earlier introduced operation CP gives then

CP
∣

∣K0
〉

= −
∣

∣K̄0
〉

,

CP
∣

∣K̄0
〉

= −
∣

∣K0
〉

, (2.9)

showing straightforwardly that

∣

∣K0
1

〉

=
1√
2
(
∣

∣K0
〉

−
∣

∣K̄0
〉

),

∣

∣K0
2

〉

=
1√
2
(
∣

∣K0
〉

+
∣

∣K̄0
〉

) (2.10)

are the eigenstates of CP, i.e.

CP
∣

∣K0
1

〉

=
∣

∣K0
1

〉

,

CP
∣

∣K0
2

〉

= −
∣

∣K0
2

〉

. (2.11)

As mentioned before, CP-symmetry is violated in weak interactions. This will be
further discussed as soon as the evolution of time can be formulated. Below there
is a short overview:

kaon Quark Composition Strangeness I3

K+ us̄ +1 + 1

2

K− ūs −1 − 1

2

K0 ds̄ +1 − 1

2

K̄0 d̄s 11 + 1

2

Table 4: Kaon overview

2.2.2 The Mass Eigenstates

As mentioned before, kaons decay in states, differing slightly in mass but immensely
in lifetime. Therefore we will name the states the short lived states and the long
lived states, defining them by

|KS〉 =
1

N

{

p
∣

∣K0
〉

− q
∣

∣K̄0
〉}

(2.12)
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and

|KL〉 =
1

N

{

p
∣

∣K0
〉

+ q
∣

∣K̄0
〉}

. (2.13)

Here we have N2 = |p|2+ |q|2, containing the weights p = 1+ǫ and q = 1−ǫ with
ǫ denoting the CP violating parameter. If we had assumed CPT violation (T stands
for time reversal), then the CP violating parameters would be different for KS and
KL (i.e. ǫS, ǫL) and thus we would find ǫS 6= ǫL. But since we suppose that physics
is invariant under CPT, there is no difference in the CP violating parameters of the
short lived and long lived states, respectively. Thus ǫS = ǫL = ǫ. Furthermore, it
was found |ǫ| ≈ 10−3.

The table below shows the decay channels of KS and KL, respectively.

KS decay modes Fraction Γi

ΓS
KL decay modes Fraction Γi

ΓL

π+π−π0 (12.55± 0.20)%
π0π0π0 (21.13± 0.27)%
π±µ∓νµ (27.18± 0.25)%
π±e∓νe (38.78± 0.28)%

π+π− (68.61± 0.28)% π+π− (2.056± 0.033) · 10−3%
π0π0 (31.39± 0.28)% π0π0 (9.27± 0.19) · 10−4%

Table 5: Decay Channels of Kaons. One notices the small amount of the KL decay into two pions

2.2.3 The Production and Common Reactions of Kaons

Since we can now describe kaons mathematically, it is important to show how kaons
may be produced by ”nature”. Below we find some possible processes:

π− + p −→ Λ +K0 E(π−) ≥ 0.91GeV

π+ + p −→ K+ + K̄0 + p E(π+) ≥ 1.50GeV

π− + p −→ Λ̄ + K̄0 + n+ n E(π−) ≥ 6.00GeV (2.14)

One finds that the creation depends on the energy of the pions. The process which
was observed in 1947 (see 1.1) was of the form

π+ + n −→ K+ + Λ (2.15)

Fig 2.2.3 shows one possible way of producing kaons in a Feynman diagram.

Fig 2.2.3 shows the first process in (2.14). As usual, possible reactions obey the
conservation laws (in strong interaction). Thus

K
S=1

0 + p
S=0
−→ n

S=0
+ K

S=1

+ (2.16)

is allowed (S = 1 on the left and right hand side), while

K̄0

S=−1
+ p

S=0
9 n

S=0
+ K

S=1

+ (2.17)
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Figure 2.2: Creation of a Kaon

is forbidden (S = −1 6= S = 1). Further reactions are given here:

K̄0 + p −→ Λ0 + π

K̄0 + n −→ p+K− (2.18)

Note that the K̄0 state has two reaction channels with matter, while K0 has only
one. This assymetry leads to an effect known as regeneration (see

3 regener

. We will now study an interesting and even more important effect called strangeness
oscillation.

3.0.4 Strangeness Oscillation

Since we operate with a decaying system, the mathematical description may not be
easy. As a consequence one makes use of an approximation, the so called Wigner
Weisskopf Approximation (WWA). Thus handling the decay, one can try an expo-
nential ansatz:

|ψ(t)〉 = e−i(m−iΓ
2
)t |ψ (0)〉 . (3.1)

Now the time evolution has the form

〈ψ (t)|ψ (t)〉 = e−Γt, (3.2)

which leads to the desired form of exponential decreasing.

We now consider the effective Schrödinger equation guided by the non-Hermitian
effective mass Hamiltonian H =M − i

2
Γ:

i
∂

∂t
|Ψ〉 = H |Ψ〉 (3.3)

The eigenstates of this Hamiltonian are the short lived and long lived states
discussed before, thus

17



H |KS,L〉 = λS,L |KS,L〉 , (3.4)

with

λS,L = mS,L −
i

2
ΓS,L. (3.5)

Using the schematic picture below, one can argue that since kaons decay into
the same states as antikaons do, they can oscillate via the virtual decay products
between particle and antiparticle before decaying. A more precice Feynman diagram
will follow at the end of this section.

Figure 3.1: Strangeness Oscillation

In order to describe the oscillation mathematically, one can use the Weisskopf-
Wigner approximation for the evolution of the decaying states, i.e.

|KS,L (t)〉 = e−iλS,Lt |KS,L〉 , (3.6)

the corresponding time evolution for kaon and antikaon is then given by
∣

∣K0 (t)
〉

= g+ (t)
∣

∣K0
〉

+
q

p
g− (t)

∣

∣K̄0
〉

,

∣

∣K̄0 (t)
〉

=
p

q
g− (t)

∣

∣K0
〉

+ g+ (t)
∣

∣K̄0
〉

. (3.7)

p and q are the weights containing the CP violation parameter and the factors g+,
g− are given by

g± (t) =
1

2

[

±e−iλSt + e−iλLt
]

. (3.8)

Suppose at t = 0, one has a K0. Now the probability for finding a K0 at time t
is given by

P
(

K0, t; |K0|
)

=
∣

∣

〈

K0
∣

∣K0 (t)〉
∣

∣

2

=

∣

∣

∣

∣

〈

K0
∣

∣

N

2p

{

e−iλSt |KS〉+ e−iλLt |KL〉
}

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

2
e−iλSt +

1

2
e−iλLt

∣

∣

∣

∣

2

=
1

4

{

e−ΓSt + e−ΓLt + 2e−ΓtRe
{

e−i∆mt
}}

=
1

4

{

e−ΓSt + e−ΓLt + 2e−Γt cos (∆mt)
}

, (3.9)
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with ∆m = mL − mS and Γ = 1
2
(ΓL + ΓS). Since 〈KS|KL〉 = δ (see following

section), the effect of CP violation is cancelled out.

In the same manner one get the probability for the K̄0 by

P
(

K0, t; |K̄0|
)

=
∣

∣

〈

K̄0
∣

∣K0 (t)〉
∣

∣

2

=
1

4

|q|2

|p|2
{

e−ΓSt + e−ΓLt − 2e−Γt cos (∆mt)
}

(3.10)

What are these two results suppose to mean?

One finds out the beam oscillates with the frequency of ∆m/2π. At times of
the order of τS one can observe the oscillations without doubt, since ∆mτS = 0.47.
Thus, studying a beam containing only K0 mesons at the time t = 0, one will find
after a certain time far from production source (thus the KS mainly died out) the
K̄0, even with same probability as finding the kaon K0. This is because of its pres-
ence in the KL.

Topping off, below a Feynman diagram showing the strangeness oscillation:

Figure 3.2: oscillation kaon-antikaon

As we can see in the picture above, one got used to describe particle oscillation
within the QFT. It was no more mystic, but comprehensible, since particle oscillation
is not an unusual phenomenon in QFT. Anyway, the more precise discussion of the
important effect of CP violation will be presented in the next subsection.

3.0.5 And again: CP Violation

At first we define the charge assymetry and insert the results from (3.9), (3.10):

19



δ(t) =
P (K0, t; |K0|)− P

(

K̄0, t; |K0|
)

P (K0, t; |K0|) + P
(

K̄0, t; |K0|
) (3.11)

(3.12)

=
|p|2−|q|2

N2

(

e−ΓSt + e−ΓLt
)

+ 2 cos(∆mt)e−Γt

(e−ΓSt + e−ΓLt) + |p|2−|q|2

N2 2 cos(∆mt)e−Γt
(3.13)

(3.14)

=
cos(∆mt) + δ cosh(∆Γ

2
t)

cosh(∆Γ
2
t) + δ cos(∆mt)

, (3.15)

(3.16)

where δ = |p|2−|q|2

|p|2+|q|2
and ∆Γ = ΓL − ΓS. Expanding for small δ we get

δ(t) =
cos(∆mt)

cosh(∆Γ/2t)
+ δ

(

1− cos2(∆mt)

cosh2(∆Γ/2t)

)

+O(δ2), (3.17)

where for small t one observes the strangeness oscillation. For large t, however,
the cos

cosh
term tends to zero, thus leaving just δ. Experiments, however, also show that

the assymetry does not vanish: considering the semileptonic decay, one compared
the decay channels of the KS, i.e.

δl =
Γ(KL −→ π−l+νl)− Γ(KL −→ π+l−ν̄l)

Γ(KL −→ π−l+νl) + Γ(KL −→ π+l−ν̄l)
(3.18)

and found that there is a charge assymmetry of the order 10−3 (i.e. δl ≈ 10−3).
In our formalism one obtains therefrom

δl = δ =
|p|2 − |q|2

|p|2 + |q|2
=

2ℜ{ǫ}
1 + |ǫ|2

≡ 〈KS|KL〉, (3.19)

wherewith we can define the electric charge in an absolute sense: positive charge
is the charge of the lepton which is more often produced in the KL decays!

3.0.6 Regeneration

Regeneration is the effect where one can ”re”-generate a KS from a pure KL-beam
by letting it react with matter [11] [12]. This is possible due to the fact that the
K0 and K̄0 components, which are present in the KL, have different scattering
amplitudes and thus show different reaction with matter. So starting with a K0

beam, we have at the beginning both eigenstates KS and KL. After a certain time
(> 4.7τ) theKS amount almost completely dies out by decaying into 2 pions, leaving
back the KL components. Hence, if one performed a measurement after this time,
the probability of finding a KS in the beam would converge towards zero. Now
suppose that instead of measuring one places a block of matter into the beam (the
strangeness is conserved in strong interactions). This block of matter then causes,
due to the fact that the total cross sections on the nucleons p, n are greatier for K̄0
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than for K0, a generation of the KS. Hence, after crossing the block we find the
state

|ψ〉 = 1

2
(f 0 + f̄ 0) |KL〉+

1

2
(f 0 − f̄ 0) |KS〉 . (3.20)

Since the scattering amplitudes f 0 (belonging to K0) and f̄ 0 (belonging to K̄0)
are not the same, f 0 − f̄ 0 6= 0. Thus the second part of (3.20) is not vanishing. We
call this term the regeneration term, while the first one is called the scattering term.

In this way we have shown that we can generate KS from a KL beam.

3.0.7 Kaons and Photons

Visualaizing the topic, it has become convenient to adopt the quasispin picture
introduced by Lee andWu [26]. In analogy to photons, having polarization directions
V (vertically) and H (horizontally) or spin-1/2 particles, the two meson states |K0〉
and

∣

∣K̄0
〉

may be defined as the quasi spin states up |↑〉 and down |↓〉. The operators
discussed in (2.2) can then be expressed by linear combinations of the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (3.21)

It is evident that the Pauli matrix σ3 acts the same as the strangeness operator
S, i.e.

S

(

K0

K̄0

)

= σ3

(

K0

K̄0

)

=

(

K0

−K̄0

)

. (3.22)

In the same way one can identify the CP operator as −σ1 with

CP

(

K0

K̄0

)

= (−σ1)
(

K0

K̄0

)

=

(

−K0

−K̄0

)

. (3.23)

One can go further and express the (effective) Hamiltonian by Pauli matrices in
combination with the identity matrix, i.e.

H =M − iΓ

2
= a1+~b · ~σ =

(

a+ b3 b1 − ib2
b1 + ib2 a− b3

)

(3.24)

with

b1 = b cosα,

b2 = b sinα,

b3 = 0. (3.25)

Furthermore, for diagonalizing the Hamiltonian, it is

a =
λS + λL

2
, b =

λS − λL
2

. (3.26)
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The phase α is related to the CP violation parameter ǫ, thus

eiα =
1− ǫ
1− ǫ . (3.27)

If we chose, in addition, |K0〉 and
∣

∣K̄0
〉

to be

(

1
0

)

and

(

0
1

)

, respectively, the long

and short lived states get the form

|KS〉 =
1

N

(

p
−q

)

,

|KL〉 =
1

N

(

p
q

)

. (3.28)

Now, since we can use the formulation shown in this section, it is convenient to
compare the different kaon-representations with polarization directions of photons.
For that, we conclude this section with a table carrying together kaons and photons:

Kaon Isospin Photons
∣

∣K0
〉

|↑〉z |V 〉
∣

∣K̄0
〉

|↓〉z |H〉
∣

∣K0
1

〉

|տ〉 |−45◦〉 = 1√
2
(|V 〉 − |H〉)

∣

∣K0
2

〉

|ր〉 |+45◦〉 = 1√
2
(|V 〉+ |H〉)

|KS〉 |→〉y |L〉 = 1√
2
(|V 〉 − i |H〉)

|KL〉 |←〉y |R〉 = 1√
2
(|V 〉+ i |H〉)

Table 6: Analogy kaon - photon

3.1 Decay and Time Evolution

3.1.1 Describing the Decay

As discussed, the Hamiltonian H for the system is non-Hermitian. However, it can
be split into a strangeness conserving part H(0) and a strangeness violating part, i.e.
H(2). The latter is called H(2) due to the fact that the strangeness S is violated by
|∆2|. The Hamiltonian under investigation takes the form as discussed in 3.0.4, i.e.

H ≡
(

M11 − i
2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)

=

(

〈K0|H(0) |K0〉 〈K0|H(2)
∣

∣K̄0
〉

〈

K̄0
∣

∣H(2) |K0〉
〈

K̄0
∣

∣H(0)
∣

∣K̄0
〉

)

(3.29)

If we assume CPT -symmetry, we can set M11 = M22 = M0. Furthermore M0 =
mK0 = mK̄0 and Γ11 = Γ12 = Γ0. Since both M and Γ are Hermitian, we have
M21 =M∗

12 and Γ12 = Γ∗
12. Thus our Hamiltonian H assumes the form

H =

(

M0 − i
2
Γ0 M12 − i

2
Γ12

M∗
12 − i

2
Γ∗
12 M0 − i

2
Γ0.

)

(3.30)

After diagonalizing the Hamiltonian we get the well-known eigenstates, i.e. the
short lived |KS〉 and the long lived |KL〉:
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|KS〉 =
1

√

1 + |ǫ|2

{

1√
2

(∣

∣K0
〉

−
∣

∣K̄0
〉)

+
ǫ√
2

(∣

∣K0
〉

+
∣

∣K̄0
〉)

}

,

|KL〉 =
1

√

1 + |ǫ|2

{

1√
2

(∣

∣K0
〉

+
∣

∣K̄0
〉)

+
ǫ√
2

(∣

∣K0
〉

−
∣

∣K̄0
〉)

}

(3.31)

The parameter ǫ is given by

ǫ =

√

M12 − i
2
Γ12 −

√

M∗
12 − i

2
Γ∗
12

√

M12 − i
2
Γ12 +

√

M∗
12 − i

2
Γ∗
12

. (3.32)

We can also express |KS〉 and |KL〉 by the CP eigenstates discussed in 2.2:

|KS〉 =
1

√

2(1 + |ǫ|2)

{∣

∣K0
1

〉

+ ǫ
∣

∣K0
2

〉}

,

|KL〉 =
1

√

2(1 + |ǫ|2)

{∣

∣K0
2

〉

+ ǫ
∣

∣K0
1

〉}

, (3.33)

which assumes the form

|KS〉 =
1

N

{

p
∣

∣K0
〉

− q
∣

∣K̄0
〉}

,

|KL〉 =
1

N

{

p
∣

∣K0
〉

+ q
∣

∣K̄0
〉}

, (3.34)

where

p

q
=

√

M12 − i
2
Γ12

√

M∗
12 − i

2
Γ∗
12

and N2 = |p|2 + |q|2 (3.35)

From (3.32) and (3.35) it follows that

p = 1 + ǫ and q = 1− ǫ. (3.36)

Conservation of CP -symmetry would implicate M12,Γ12 ∈ R and ǫ = 0. From
this follows

|KS,L〉 = |K1,2〉 , (3.37)

i.e. implying that the mass eigenstates are equal to the CP eigenstates. As a
consequence, there would not be any mixing between the CP eigenstates. Thus,
CP -symmetry violation is necessary for the mixing!

The picture below shows the decay of the K+:

23



3.1.2 Describing the Time Evolution

In this subsection, we again want to emphasize the time evolution of the system
guided by the effective Hamiltonian and give a summary of the values that come
out. Thus, we have the Schrödinger equation with the non hermitian effective mass
Hamiltonian for the two state system, i.e.

i
∂

∂t
|ψ〉 = H |ψ〉 , (3.38)

which gives us the diagonalized mass eigenstates (using the Wigner-Weisskopf-
Approximation):

|KS(t)〉 = e−iλSt |KS〉 ,
|KL(t)〉 = e−iλLt |KL〉 . (3.39)

The explicit calculation then gives us

λS = mS −
i

2
ΓS =M0 −

i

2
Γ0 −

√

(M12 −
i

2
Γ12) · (M∗

12 −
i

2
Γ∗
12),

λL = mL −
i

2
ΓS =M0 −

i

2
Γ0 +

√

(M12 −
i

2
Γ12) · (M∗

12 −
i

2
Γ∗
12) (3.40)

The differences in mass and decay, i.e. ∆m = mL−mS and ∆Γ = ΓL−ΓS, we state
by

∆m− i

2
∆Γ = 2

√

(M12 −
i

2
Γ12) · (M∗

12 −
i

2
Γ∗
12). (3.41)

The second part of the equation we identify as

√

(M12 −
i

2
Γ12) · (M∗

12 −
i

2
Γ∗
12) ≡

2pq

C
, (3.42)

where C must be a constant with dimension [s/~].
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From the summary, i.e.

m0 = 500MeV

ΓS =
1

τS
≈ 1010

1

s

ΓL =
1

τL
≈ 1

600
ΓS

∆m = mL −mS ≈
ΓS
2
, (3.43)

the immense lifetime difference of KS and KL, respectively, is again apparent.

3.1.3 Time Evolution Unitary

Now we will take a closer look to the time evolution of kaons. Kaons decay. Hence
the decrease of the norm of the initial state |K0(t)〉 must be incorporated to same
amount by the norm of the final state |f〉, since we must suppose that the time
evolution is unitary. Thus the time evolution of the K0 meson (now including
oscillation and decays) has the form

∣

∣K0
〉

−→ a(t)
∣

∣K0
〉

+ b(t)
∣

∣K̄0
〉

+
∑

f

cf (t) |f〉 , (3.44)

with a(t) = g+(t) and b(t) =
q
p
g−(t).

Yet we will use a more convenient formalism. For the time evolution we will use
an unitary operator U(t,0) acting on the eigenstates of the effective Hamiltonian,
i.e. KS and KL. This has the form

U(t, 0) |KS,L〉 = e−iλS,Lt |KS,L〉+ |ΩS,L(t)〉 , (3.45)

where |ΩS,L(t)〉 stays for all decay products. Here, it is important to stress that the
+ in (3.45) is actually a direct sum ⊕, since the decayed states are not located in
the same Hilbert space as the initial states, but in the othonormal Hilbert space.
The direct sum was discussed in chapter 2.1.1.

Anyway, the use of the unitary operator U(t,0) gives us the opportunity to de-
scribe the evolution of time and thus we define

∣

∣KS/L(t)
〉

≡ U(t, 0) |KS,L〉 . (3.46)

The structure of this formalism, or, to be more precisely, the states ΩS,L(t) allow to
use the total Hilbert space, since not only the Hilbert space of the kaons themselves
is of importance for entanglement, but also the Hilbert space of all other possible
states, which can be reached by decay. One learned in particular that there might
be some kind of entanglement, considering only the Hilbert space of the kaons, but
investigating the whole Hilbert space, and thus enlarging the kaon’s, the effects of
entanglement may vanish. However, this formalism has not only advantages, of
which more later. Let us return to the calculation of the time evolution.

25



Leaved off with (3.44), one can calculate the transition amplitudes of the decaying
states by making use of the unitarity of U (U †U = I). Since

〈KS(t)|KS(t)〉 ≡ |KS〉U †(t, 0)U(t, 0) |KS〉 = 〈KS|KS〉 = 1, (3.47)

one gets

1 = e−ΓSt + 〈ΩS(t)|ΩS(t)〉. (3.48)

Here one assumed that

〈KS|ΩS(t)〉 = 0. (3.49)

Thus one gets

〈ΩS(t)|ΩS(t)〉 = 1− e−ΓSt

〈ΩL(t)|ΩL(t)〉 = 1− e−ΓLt

〈ΩL(t)|ΩS(t)〉 = 〈KL|KS〉(1− ei∆mte−Γt)
〈

KS/L

∣

∣ΩS(t)〉 =
〈

KS/L

∣

∣ΩL(t)〉 = 0. (3.50)

These results and the use of this unitary time evolution will be revived at the
most important sector, namely when dealing with entanglement. It has become
handy to introduce another idea when investigaten the decay: the open quantum
formalism.

3.1.4 An Open Quantum Formalism

Another way to describe the decay (see 3.1.1) is given by the open quantum system
formulation. In [52], [53] it has been shown that a master equation of the Lindblad
type can describe a decaying system as well, whereupon the decay acts like a sort
of decoherence and thus giving us another view to the problem. Therefore we will
make use of this formalism in order to describe the kaon’s decay.

We will start with the effective Schrödinger Equation in the Liouville-von Neu-
mann form (~ ≡ 1):

d

dt
ρ = −iHeffρ+ iρH†

eff . (3.51)

ρ is a 2 x 2 density matrix, while Heff is non-Hermitian (see 3.1.1). From this we
come to the time evolution of the short and long lived state:

∣

∣KS/L(t)
〉

= e−imS/Lte−
ΓS/L

2 t
∣

∣KS/L

〉

, (3.52)

where mS/L and ΓS/L are the masses and decay constants of the two states (see
(3.43)). At first view, it becomes clear that for t > 0 the states (3.52) are no
more normalized. Nevertheless, we start the new formalism by doubling the Hilbert
space and thus incorporating the decay as dissipator of the new Hilbert space by a
Lindblad operator. From the beginning: starting with the master equation in the
Lindblad form, i.e.
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d

dt
ρ = −i [H, ρ]−D [ρ] , (3.53)

we have the dissipator given by

D [ρ] =
1

2

∑

j

(A†
jAjρ+ ρA†

jAj − 2AjρA
†
j). (3.54)

In this case, one doubles the two-dimensional Hilbert space to get a four-dimensional
one, i.e.

Htot = Hs ⊗Hf , (3.55)

where Hs is responsible for the surviving part while Hf is for the decaying (final)
part. In this Hilbert space Htot lives the density matrix ρ, having the form

ρ =

(

ρss ρsf
ρfs ρff

)

, (3.56)

where the ρ’s in (3.56) are 2 x 2-matrices themselves. Furthermore it is ρsf = ρ†fs.
Last but not least one extends the effective Hamiltonian relevant for the system to
the total Hilbert space Htot by

H =

(

H 0
0 0

)

. (3.57)

Now, one decomposes the master equation into the components of the density
matrix ρ from (3.56). Hence

ρ̇ss = −i [H, ρss]−
1

2

{

B†B, ρss
}

− D̃ [ρss] ,

ρ̇sf = −iHρsf −
1

2
B†Bρsf −

1

2

∑

j

A†
jAjρsf ,

ρ̇ff = BρssB
†, (3.58)

where the A0, Aj are Lindblad generators, whereas

A0 =

(

0 0
B 0

)

with B : Hs → Hf , (3.59)

is incorporating the decay, while

Aj =

(

Aj 0
0 0

)

with j 6= 0 (3.60)

is responsible for the survive components of the density matrix ρ. Furthermore it is
B†B = Γ (Γ being the decay matrix of Heff ) and
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D̃ [ρss] =
1

2

∑

j=1

(A†
jAjρ+ ρA†

jAj − 2AjρA
†
j) (3.61)

stands for any decoherence or dissipation which may emerge.

But what do we have now? Well, the master equation (3.58) replaces the Schrödinger
equation completely, while we can say more about the density matrix (and thus
about the decay):

1. the time evolution ρss is independent of ρsf , ρfs and ρff .

2. since ρsf and ρfs decouple from ρss, we can w.l.o.g. set them to be zero, without
changing any physics.

3. the initial condition ρff (0) = 0, which is reasonable, implies that the time
evolution only depends on ρss and thus has the form

ρff (t) = B

∫

dt′ρss(t
′)B†, (3.62)

which evidently shows the form we do expect concerning particle decay. Further-
more one can see that the decay is somehow concerned with decoherence and thus
these two subjects belong together.

We will now start in introducing the ”entangled side of life”.
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4 EPR Bell Entanglement

In this section we give the definition of entanglement and try to treat it with both, the
so called local realistic theories (LRT) and quantum theory. We will find that one can
derive an inequality (namely the Bell inequality) under a certain assumption, which
is called Bell’s locality assumption. This inequality predicts a certain result – better
said a bound - when regarding the expectation values (or probabilities). Furthermore
we will study this Bell inequality and for that compare the predictions of QM and
LRT, finding that there is a measurable difference, which will be resolved by the
experiment determining the winner: quantum mechanics.

4.1 Entanglement

It was Schrödinger himself who set the ball rolling in 1935 when studying the
Schrödinger equation in a two particle system [13]. Anyhow, if Ψ1 and Ψ2 are
solutions of the Schrödinger equation, then is any linear combination of Ψ1 and Ψ2

a solution, too. This holds for a multi-particle system, too. Let |↑〉 and |↓〉 be
Hilbert basis of a two level system. Now the linear combination

|Ψ〉 = 1√
2
(|↑〉 ⊗ |↓〉+ |↓〉 ⊗ |↑〉) (4.1)

is a solution of the Schrödinger equation, too.

This is a strong statement: if the left subsystem A (measured by Alice) detects
the state |↑〉, then the right subsystem (Bob) has no other choice than detecting |↓〉
(supposed they have the same orientation, which is important) and vice versa. Thus
the two states of the system - which are spatially separated - seem to have some
kind of an invisible connection (correlation); Schrödinger called states of the form
(4.1) - which is by the way one of the Bell states - entangled states (verschränkte
Zustände). Before giving the mathematical definition of entanglement in the next
section, we will conclude this section with some (familiar) states in physics, which
are known to be entangled [47]:

∣

∣Ψ−
〉

=
1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

=
1√
2
(|H〉 ⊗ |V 〉 − |V 〉 ⊗ |H〉)

=
1√
2

(∣

∣K0
〉

⊗
∣

∣K̄0
〉

−
∣

∣K̄0
〉

⊗
∣

∣K0
〉)

=
1√
2

(∣

∣B0
〉

⊗
∣

∣B̄0
〉

−
∣

∣B̄0
〉

⊗
∣

∣B0
〉)

=
1√
2
(|I〉 ⊗ |⇑〉 − |II〉 ⊗ |⇓〉) (4.2)

The states (4.2), all share the same scheme: a two state system, which is en-
tangled. Either it is a spin-1

2
system, a photon system, where H/V stands for

vertically/horizontally polarized, a meson-antimeson system, or even a single neu-
tron which is travelling through a two-way interferometer (path I and path II),
implicating that the spin depends on which path was taken.
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4.2 Mathematical View of Entanglement

A bipartite pure state |Ψ〉 is called separable iff it can be written as a single tensor
product, namely

|Ψ〉 =
∣

∣ΨA
〉

⊗
∣

∣ΨB
〉

. (4.3)

Every nonseperable (pure) state is called entangled. Such a state has the form

|Ψ〉 =
∑

i

∑

j

cij
∣

∣ΨA
i

〉

⊗
∣

∣ΨB
j

〉

, (4.4)

with at least two components of cij not vanishing. Here, the |Ψi〉 build an ONB, i.e.
a basis of the Hilbert space with pairwise orthogonal and to the lenght 1 normalized
elements.

More complications arise if we consider mixed states: for mixed states it is not
possible to write down explicitly the form of entangled states. Hence we call a state
entangled iff it cannot be written in the form of a separable states, namely

ρ =
∑

i=1

piρ
A
i ⊗ ρBi , (4.5)

where pi stands for the probabilities, so that pi ≥ 0 and
∑

i pi = 1.
Since a more detailed analysis of this problem would go beyond the scope of this
thesis, it is only important to add that precisely because of the impossibility of
writing down a unified form of entangled mixed states, it can be enormously difficult
to find out whether a state is entangled or separable [28] [32] [33] [34] [35].

4.3 The EPR Scenario

”Spooky action at distance.” That was the phrase Einstein used, when writing about
entanglement [14]. His expression is an indication for that he was not really sat-
isfied with the whole construct (of interpretation) that was build around quantum
mechanics. On the one hand there was the statistical and even non-deterministic
and random (”God does not play dice”) face of quantum mechanics and on the other
hand some kind of action at distance which he had been able to ”eliminate” in grav-
itation theory some years ago. Now by use of the uncertainty relation of Heisenberg
[15] - which he tried to outsmart by cleverer and cleverer gedankenexperiments -
he wanted to use the non classical properties of quantum mechanics to show once
and for all that the grand new theory, quantum mechanics, was incomplete and thus
simply spoken: false.
We will start with the classical (in the sense of popular) Heisenberg’s uncertainty
principle, namely using position and momentum (here ~ 6= 1):

∆x∆p ≥ ~

2
, (4.6)

or alternatively written
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〈∆x〉ψ 〈∆p〉ψ ≥
~

2
, (4.7)

Now the concept of the EPR paradox is about completeness, reality and locality
of quantum theory [17]. EPR wanted to show that the general quantum mechanical
idea, that is to say that a system only comes to have a proper state when s.o. mea-
sured it, was wrong, since a value of a parameter should be real, no matter if there
is a measurement or not. Thus the nondeterministic character should drop out. On
the other side, however, Einstein could not get used to the concept of nonlocality
(keyword: spooky action at a distance), so that - if procurable - the violation of
Heisenberg’s uncertainty relation would show the incompleteness of quantum me-
chanics.
Therefore EPR created following gedankenexperiment. Let us consider two parti-
cles emitted by a source and flying apart from each other with opposite momenta
of equal (but random) magnitude. Then we measure the momentum of particle 1
while leaving particle 2 as it is. The knowledge of the momentum of particle 1 (now
the momentum has changed due to the measurement itself, but this is no longer
of importance) allows us to predict the momentum of particle 2: the momentum
vector just changed the sign (supposed, they are same sort of particles). Now we
can perform a measurement of the position of particle 2 and get now both kinds of
informations of the complementary observables, i.e. position and momentum. With
this simple gedankenexperiment one just either violated the uncertainty relation or
showed that quantum mechanics cannot be complete, since the experiment shows
that both observables, position and momentum, are in fact part of one reality while
quantum mechanics cannot predict both at one time. This, however, turned out not
to be true.
Before resolving this it is advantageous to introduce another configuration of the
experiment. Since we deal with particle physics, too, let us have a pion decaying
(among others) into an electron and positron. Thus the emitted two particles have
opposite spins (in every direction), i.e. one has |↑〉 and the other has |↓〉. Now since
the spin components in the x1, x2 and x3 direction are complementary to each other,
(and due to the uncertainty relation) one cannot measure one without disturbing
the others. Thus, if one measured the spin of the electron’s x1-axis, one can def-
initely tell what spin-state the positron is in (concerning x1-axis). If we measure
the positrons x2-axis, we can even say the positron has spin about two axes, which
contradicts to our concept of spin.

In short: some arguments used in the above paragraph have to be wrong. At first:
Heisenberg’s uncertainty relation holds for 2 observables, which can be measured for
identically preparated systems, not for two different particles. Niels Bohr argued
[18] that since the set-up was arranged in a way such that it was no more possible to
repeat the complementary experiment (i.e. to switch the order of measurements) and
thus the two observables have to be complementary and not part of one reality. The
Copenhagen interpretation of QM, however, solves the seeming paradox by negating
that the measurement on particle 1 has anything to do with a determination of any
property of particle 2.

Since most of this belongs to the category ”interpretation”, we have to start in
searching for physical descriptions:
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4.4 Hidden Variables

One could say of course, there is no correlation between the particles and therefore
one could try to explain entanglement and nonlocality by intrinsic properties of the
particles. It would be appropriate to introduce so called hidden variables which
assign the particle for every event or measurement a proper value. For example,
let us consider the photon case where we are able to measure the polarizations
vertical V or horizontal H of two entangled photons. Now every photon has the
intrinsic information (by hidden variables) what value to show if measured e.g. in
y direction. Thus if photon A shows |H〉, photon B shows exactly the opposite
(as arranged at the beginning), namely |V 〉, guaranteeing the (no more) spooky
behavior of entanglement. It is instantly clear that the two photons must have an
infinite number of “arrangements”, since we can measure any arbitrary angle (i.e.
choose any direction). For every angle (direction) Θ the measurement outcomes
must be anticorrelated. But what if we took different angles? Let us consider the
situation where we measure Θ for photon A and Φ for photon B, with Θ 6= Φ. This
is going to be investigated in the following section.

4.5 The Bell inequality

4.5.1 Set Theoretical Derivation

Consider the following scenario. Alice (A) and Bob (B) set up two Stern-Gerlach
apparatuses, as illustrated in the Figure below:

Figure 4.1: Scheme

The source (in the middle) produces two particles which fly to Alice and Bob,
respectively, whereupon they can make independently measurements. We denote
the possible outcomes of the measurements with + or −, respectively. Next, Alice

and Bob have the ability to measure in one out of three directions each, i.e. ~a,~b and
~c. Investigating the possible combinations of measurements, it is easy to see that
there are 8 possible combinations by frequency Ni, namely [47]

As a direct consequence, the relation

N3 +N4 ≤ N2 +N3 +N4 +N7. (4.8)

holds. The probability P for Alice to obtain the result + if her measurement

setting was ~a and Bob measuring + in direction ~b is given by

P (~a+,~b+) =
N3 +N4
∑

Ni

. (4.9)
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Frequency Alice Bob

N1 (~a+,~b+,~c+) (~a−,~b−,~c−)
N2 (~a+,~b+,~c−) (~a−,~b−,~c+)

N3 (~a+,~b−,~c+) (~a−,~b+,~c−)
N4 (~a+,~b−,~c−) (~a−,~b+,~c+)

N5 (~a−,~b+,~c+) (~a+,~b−,~c−)
N6 (~a−,~b+,~c−) (~a+,~b−,~c+)

N7 (~a−,~b−,~c+) (~a+,~b+,~c−)
N8 (~a−,~b−,~c−) (~a+,~b+,~c+)

Table 7: The possible measurements by Alice and Bob

In the same manner one can find

P (~a+,~c+) =
N2 +N4
∑

Ni

, (4.10)

P (~c+,~b+) =
N3 +N7
∑

Ni

. (4.11)

Using the probabilities and inserting them into (4.8) one then obtains

P (~a+,~b+) ≤ P (~a+,~c+) + P (~c+,~b+). (4.12)

This is a Bell inequality!

What does quantum mechanics say regarding this inequality? Let us take the
Bell state |ψ−〉. In the {|0〉 , |1〉}-notation it has the form

∣

∣ψ−
〉

=
1√
2
{|01〉 − |10〉} . (4.13)

The probability for Alice finding ”+” at ~a and ”+” at ~b is given by

P (~a+,~b+) = Tr
(

∣

∣ ~a+
〉 〈

~a+
∣

∣⊗
∣

∣

∣

~b+
〉〈

~b+
∣

∣

∣

∣

∣ψ−
〉 〈

ψ−
∣

∣

)

=
∥

∥

∥

∣

∣ ~a+
〉 〈

~a+
∣

∣⊗
∣

∣

∣

~b+
〉〈

~b+
∣

∣

∣

∣

∣Ψ−
〉

∥

∥

∥

2

(4.14)

We take a parametrization, i.e.

|~a+〉 = cosα |0〉+ sinα |1〉
|~a−〉 = − sinα |0〉+ cosα |1〉
∣

∣

∣

~b+
〉

= cos β |0〉+ sin β |1〉
∣

∣

∣

~b+
〉

= − sin β |0〉+ cos β |1〉 (4.15)

(4.16)

Strictly speaking, the phase eiφ is missing, but since the BI can be violated even
without it, it can be neglected so far. However, it comes useful visualizing the
common picture referred to the parametrization. It has the form
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Figure 4.2: Parametrization with an arbitrary vector |v〉

Now inserting the parametrization into (4.14), the probability assumes the form

P (~a+,~b+) =
1

2

∥

∥

∥cosα sin β |~a+〉
∣

∣

∣

~b+
〉

− sinα cos β |~a+〉
∣

∣

∣

~b+
〉∥

∥

∥

2

=
1

2
|cosα sin β − sinα cos β|2

=
1

2
cos2(α− β)

=
1

4
(1 + cosφab) , (4.17)

where φab is the angle between ~a and ~b.
Using this result and inserting it into the Bell inequality (4.12), one gets

1

4
(1 + cosφab) ≤

1

4
(1 + cosφac) +

1

4
(1 + cosφcb) , (4.18)

which leads to the simplified inequality

cosφab ≤ 1 + cosφac + cosφcb. (4.19)

Let

φac = φcb = 2φ, φ =
π

2
, φab = φ, (4.20)

then the inequality becomes

0 ≤ 1− 1− 1 = −1, (4.21)

which shows a contradiction! Thus, the Bell inequality may be violated by quan-
tum mechanical predictions while the assumptions of locality and realism lead to
probabilities which have to satisfy the BI.
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4.5.2 Original Derivation by J. Bell

As introduced in the original paper [20], let us consider a system of two spin-1/2
particles in the so called singlet state, i.e.

∣

∣ψ−
〉

=
1√
2
{|+〉 |−〉 − |−〉 |+〉} , (4.22)

where the notation has been changed again to suggest that |±〉 are the states for
the spin components ±~/2 in z-direction. Measuring a spin then corresponds to
multiplying the Pauli matrices to the direction of the measurement, i.e.

~σ · ~a. (4.23)

If the pauli matrices are in the |±〉 basis, (4.23) has the form
(

a3 a1 − ia2
a1 + ia2 −a3

)

. (4.24)

We use this to derive the (quantum mechanical) expectation value EQM for both
spin measurements:

EQM(~a,~b) =
〈

ψ−
∣

∣~σ · ~a⊗ ~σ ·~b
∣

∣ψ−
〉

=
1

2
[〈+|~σ · ~a |+〉 〈−|~σ ·~b |−〉

− 〈+|~σ · ~a |−〉 〈−|~σ ·~b |+〉
− 〈−|~σ · ~a |+〉 〈+|~σ ·~b |−〉
+ 〈−|~σ · ~a |−〉 〈−|~σ ·~b |−〉]

=
1

2
[−a3b3 − (a1 − ia2)(b1 + ib2)− (a1 + ia2)(b1 − ib2)− a3b3]

= −[a1b1 + a2b2 + a3b3] = −~a ·~b (4.25)

Every ”complete” - to use the same term as EPR did - theory should be able
to reproduce this result (which is predicted by quantum mechanics already). To
”complete up” quantum mechanics, one introduces a parameter λ, which may be
an arbitrary mathematical object. Now the result of a spin measurement depends
on the angle ~a and λ. W.l.o.g. we let λ be real. The results of measuring the
observables (A,B) are denoted as above

A(~a, λ) = ±1, B(~b, λ) = ±1. (4.26)

So A,B are functions which only depend on ~a (~b) and λ. Furthermore we introduce an
arbitrary probability distribution ρ(λ) to get the expectation value E(a,b), namely
by

E(a, b) =

∫

dλρ(λ)A(~a, λ) ·B(~b, λ), (4.27)

which is normalized by
∫

dλρ(λ) = 1. It is important to stress that the dot ”·”
represents ”Bell’s locality assumption”, i.e. that obsevable A does not depend on
the choice for B’s observable and vice verca. From (4.25) it is obvious that

E(a, a) = −E(a,−a) = −1
E(a, an) = 0. (4.28)
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From this John S. Bell constructed an inequality which can be violated using the
quantum mechanical expectation value EQM [20]. (4.27) cannot be lower than −1,
and this can be achieved with ~a = ~b only iff

A(~a, λ) = −B(~b, λ). (4.29)

Assuming this, we can rewrite (4.27) into

E(~a,~b) = −
∫

dλρ(λ)A(~a, λ)A(~b, λ) (4.30)

Considering the difference of the following expectation values, we get

E(~a,~b)− E(~a,~c) = −
∫

dλρ(λ)[A(~a, λ)A(~b, λ)− A(~a, λ)A(~c, λ)]

=

∫

dλρ(λ)A(~a, λ)A(~b, λ)[A(~b, λ)A(~c, λ)− 1]. (4.31)

Here, we used (4.26) and therewith A(~a, λ)2 = B(~b, λ)2 = 1. Furthermore,

∣

∣

∣
E(~a,~b)− E(~a,~c)

∣

∣

∣
=

∣

∣

∣

∣

∫

dλρ(λ)A(~a, λ)A(~b, λ)[A(~b, λ)A(~c, λ)− 1]

∣

∣

∣

∣

≤
∫

dλ
∣

∣

∣
ρ(λ)A(~a, λ)A(~b, λ)[A(~b, λ)A(~c, λ)− 1]

∣

∣

∣

=

∫

dλρ(λ)
∣

∣

∣[A(~b, λ)A(~c, λ)− 1]
∣

∣

∣

=

∫

dλρ(λ)[1− A(~b, λ)A(~c, λ)] (4.32)

Explicitly written, (4.32) has the form
∣

∣

∣
E(~a,~b)− E(~a,~c)

∣

∣

∣
≤ 1 + E(~b,~c), (4.33)

the Bell inequality. We derived it using only Bell’s locality assumption. Hence, all
local realistic theories have to satisfy this inequality. We will again ask Quantum

Mechanics. Let ~a,~b,~c be unit vectors and let

~a ·~b = ~b · ~c = 1√
2
, ~a · ~c = 0. (4.34)

Then our Bell inequality (4.33) reads

1− 1√
2
≥ 1√

2
, (4.35)

which is, indeed, a contradiction.

4.5.3 The CHSH - Bell inequality

Since the CHSH inequality (Clause, Horne, Shimony, Holt) is more adapted to
reality and thus easier to implement experimentally, it will be presented as well.
One of the most different aspects in contrast to the original BI is that the CHSH
inequality allows non-perfect situations; thus, the average measurement A, B must
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not be 1/-1, i.e. |A| , |B| ≤ 1, since not every particle has to be detected [22]. Now
the expectation value depends on arbitrary variables n,m. It is given by

E(n,m) =

∫

dλρ(λ)A(n, λ) ·B(m,λ). (4.36)

Again we have
∫

dλρ(λ) = 1 and presume Bell’s locality assumption. Subtracting,
i.e.

E(n,m)− E(n,m′) =

∫

dλρ(λ) {A(n, λ)B(m,λ)− A(n, λ)B(m′, λ)}

=

∫

dλρ(λ)A(n, λ)B(m,λ) {1± A(n, λ)B(m′, λ)}

−
∫

dλρ(λ)A(n, λ)B(m′, λ) {1± A(n′, λ)B(m,λ)} , (4.37)

adding a term that will be subtracted again and turning the minus in (4.37) into a
plus one can certainly claim that

|E(n,m)− E(n,m′)| ≤
∫

dλρ(λ) {1± A(n′, λ)B(m′, λ)}

+

∫

dλρ(λ) {1± A(n′, λ)B(m,λ)} . (4.38)

holds. Rewritten, we can bring it into a more appealing form, namely

|E(n,m)− E(n,m′)| ≤ 2 + E(n′,m′) + E(n′,m), (4.39)

and by defining a correlation function S, we get

S(n,m, n′,m′) = |E(n,m)− E(n,m′)|+ E(n′,m′) + E(n′,m) ≤ 2, (4.40)

or, without using absolute values,

−2 ≤ E(n,m)− E(n,m′) + E(n′,m′) + E(n′,m) ≤ 2. (4.41)

Again, we will compare this with quantum mechanics. This time, we will use an-
other formalism to get the answer. That is because we will use the same formalism
when dealing with entangled kaons, see section 5.

However, the quantum mechanical expectation value has the form

EQM(~n, ~m) =
〈

ψ−
∣

∣~n~σ ⊗ ~m~σ
∣

∣ψ−
〉

= Tr
(

~n~σ ⊗ ~m~σ
∣

∣ψ−
〉 〈

ψ−
∣

∣

)

= −n1m1 − n2m2 − n3m3 = −~n~m = − cosφnm. (4.42)

Thus the correlation function S has the form

S = |− cosφnm + cosφnm′ |+ |− cosφn′m − cosφn′m′ | ≤ 2 (4.43)

The left hand side of (4.43) turns to be for the arrangement of directions illus-
trated in the picture below:
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S =

∣

∣

∣

∣

− cos
π

4
+ cos

3π

4

∣

∣

∣

∣

+
∣

∣

∣− cos
π

4
− cos

π

4

∣

∣

∣

=

∣

∣

∣

∣

− 1√
2
− 1√

2

∣

∣

∣

∣

+

∣

∣

∣

∣

− 1√
2
− 1√

2

∣

∣

∣

∣

= 2
√
2 ≈= 2.8, (4.44)

which certaintly is a contradiction, again!

Figure 4.3: Possible Arrangement of the Directions n, n′,m,m′

So there is obviously a measurable difference between quantum mechanics and all
local realistic theories. Thus an experiment can determine which of the two theories
describes the world correctly (actually, which describes the world incorrectly).
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5 Kaons and Entanglement

The main part of the thesis. After formulating the time evolution for entangled
kaons, we will set up a Bell inequality and investigate it in the kaon system. After
discussing the problems arising through the common formalism we will introduce a
new formalism which will be recapitulated as well.

5.1 Preparing

We will now be concerned with states having the form as introduced in section 3,
i.e. entangled states:

|Ψ〉 = 1√
2
(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉) . (5.1)

Applying to kaons we get

|Ψ〉 = 1

NSL

√
2
(|KS〉 ⊗ |KL〉 − |KL〉 ⊗ |KS〉) . (5.2)

Actually, (5.2) has this particular form just at the beginning where t = 0. Since
kaons decay, we have to use a proper time evolution. Thus the |Ψ〉 is strictly speaking
a |ψ(t = 0)〉. Furthermore the normalization NSL = N2

2pq
comes from the KSKL basis.

Choosing the strangeness-basis, we get

|Ψ(t = 0)〉 = 1√
2

(∣

∣K0
〉

⊗
∣

∣K̄0
〉

−
∣

∣K̄0
〉

⊗
∣

∣K0
〉)

, (5.3)

which is the practically produced state in accelerator facilities.

5.1.1 Time Evolution of Entangled Kaons

As introduced in section 3.1.3, we will now make use of the unitary operator U(t, 0)
which acts (to repeat) as follows:

U(t, 0) |KS,L〉 = e−iλS,Lt |KS,L〉+ |ΩS,L(t)〉 . (5.4)

Note again that (5.4) is in fact a direct sum (see 2.1.1). For the time evolution
of (5.2) we need to compose the time evolutions for KS and KL, respectively. This
gets us to

U(t, 0) = Ul(t, 0)⊗ Ur(t, 0), (5.5)

where Ul(t, 0), Ur(t, 0), belonging to the left and right (space of the) meson, re-
spectively, act like (5.4) in the ordinary way. Furthermore they fulfill the composition
law, i.e.

U(t2, 0) = Ul(t2, t1) · Ur(t1, 0). (5.6)

Applying the unitary time evolution onto the the initial state (5.2), we get at
time tr:
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|ψ(tr)〉 = U(tr, 0) |ψ(t = 0)〉 = Ul(tr, 0)⊗ Ur(tr, 0) |ψ(t = 0)〉 . (5.7)

Now we are able to compute the probabilities whether the state is in a certain
quasispin (on the left and right hand side, in each case) or not. These quasispin
states are called |kn〉l and |kn〉r, respectively. For calculation of the probabilities
we use the projection operators Pl,r(kn) that act onto the quasispin states, and the
projection operators Ql,r(kn) that act onto the orthogonal states, which are quoted
below:

Pl(kn) = |kn〉l 〈kn|l ,
Pr(kn) = |kn〉r 〈kn|r (5.8)

and

Ql(kn) = 1− Pl(kn),
Qr(kn) = 1− Pr(kn). (5.9)

After using (5.7) in order to describe the time evolution, will now perform a
measurement at |km〉 at tr on the right hand side. For this we have to project -
according to QM - onto the state. Hence the new state becomes

∣

∣

∣ψ̃(tr)
〉

= Pr(km) |ψ(tr)〉 . (5.10)

As long as we do not measure on the left hand side, (5.10) represents the current
state. When applying a measurement on the left hand side, the state derives to

∣

∣

∣
ψ̃(tl, tr)

〉

= Pl(kn)Ul(tl, tr)Pr(km) |ψ(tr)〉 . (5.11)

Anyway, moving together Pl, Pr and Ul, Ur and applying them onto |ψ(t = 0)〉, we
get a state called |Ψ〉, i.e.

|Ψ(tl, tr)〉 = Pl(kn)Pr(km)Ul(tl, tr)Ur(tl, tr) |ψ(t = 0)〉 , (5.12)

which can be seen as a factorization of eigentime tl and tr, respectively. Now
there is a theorem [46] which claims that these two states, i.e. (5.11) and (5.12)
have the same norms. Hence

∥

∥

∥

∣

∣

∣
ψ̃(tl, tr)

〉∥

∥

∥

2

= ‖|ψ(tl, tr)〉‖2 . (5.13)

The results from this chapter are important for the following ones, especially
when constructing a Bell inequality.

5.1.2 The {Y, Y }, {N,N}, {Y,N} and {N,Y } probabilities

Armed with the results above we can now calculate the quantum mechanical prob-
abilities for finding certain quasispins at certain times on the left and right hand
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side. For this, we call every event, where on the left hand side at time tl a kn has
been measured, Pn(Y, tl). If, however, on the left hand side at time tl the kn has not
been measured, we call the event Pn(N, tl). Thus, the probabilities for measuring
on both sides have the form (procedure shown in (5.1.1) explicitly):

Pn,m(Y, tl;Y, tr) = ‖Pl(kn)Pr(km)Ul(tl, 0)Ur(tr, 0) |ψ(t = 0)〉‖2

Pn,m(N, tl;N, tr) = ‖Ql(kn)Qr(km)Ul(tl, 0)Ur(tr, 0) |ψ(t = 0)〉‖2

Pn,m(Y, tl;N, tr) = ‖Pl(kn)Qr(km)Ul(tl, 0)Ur(tr, 0) |ψ(t = 0)〉‖2 ,
Pn,m(N, tl;Y, tr) = ‖Ql(kn)Nr(km)Ul(tl, 0)Ur(tr, 0) |ψ(t = 0)〉‖2 , (5.14)

with

Pn,m(Y, tl;Y, tr) + Pn,m(N, tl;N, tr) + Pn,m(Y, tl;N, tr) + Pn,m(N, tl;Y, tr) = 1.
(5.15)

The latter is a consequence of the claimed unitary transformation. To get a brief
glimpse of the calculating procedure it is useful to calculate the probabilities.
Let us derive the probability PK̄0,K̄0(Y, tl;Y, tr), i.e. the probability of finding (or
not) a K̄0 on the left hand side and finding a K̄0 on the right hand side at time tl
and tr. The projection operators P (K̄0) act on the short lived and long lived states
|KS〉 and |KL〉, respectively, as this:

P (K̄0) |KS〉 =
∣

∣K̄0
〉 〈

K̄0
∣

∣ |KS〉 =
−q
N

∣

∣K̄0
〉

(5.16)

P (K̄0) |KL〉 =
∣

∣K̄0
〉 〈

K̄0
∣

∣ |KL〉 =
q

N

∣

∣K̄0
〉

. (5.17)

From this we get

PK̄0,K̄0(Y, tl;Y, tr) =
∥

∥Pl(K̄
0)Pr(K̄

0)Ul(tl, 0)Ur(tr, 0) |ψ(0)〉
∥

∥

2

=
N4

8 |p|2 |q|2
‖Pl(K̄0)Pr(K̄

0)

{(e−iλStl |KS〉l + |ΩS(tl)〉l)⊗ (e−iλLtr |KL〉r + |ΩL(tr)〉r)
− (e−iλLtl |KS〉l + |ΩL(tl)〉l)⊗ (e−iλStr |KS〉r + |ΩS(tr)〉r)}‖2

=
N4

8 |p|2 |q|2
∥

∥

∥

∥

−q · q
N ·N

{

e−iλStl−iλLtr − e−iλLtl−iλStr
} ∣

∣K̄0
〉

l

∣

∣K̄0
〉

r

∥

∥

∥

∥

2

=
|q|2

8 |p|2
{

e−ΓStl−ΓLtr + e−ΓLtl−ΓStr − 2 cos(∆m∆t) · e−Γ(tl+tr)
}

, (5.18)

which can also be expressed via the charge asymmetry parameter, i.e.

PK̄0,K̄0(Y, tl;Y, tr) =

1− δ
8(1 + δ)

{

e−ΓStl−ΓLtr + e−ΓLtl−ΓStr − 2 cos(∆m∆t) · e−Γ(tl+tr)
}

(5.19)
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5.2 The Bell inequality

We are now prepared to formulate a Bell inequality for the kaon system. As in-
troduced in the previous chapter, we must assume Bell’s locality hypothesis. That
is, the correlation function O(kn, ta; km, tb) must be equal to the procut of the two
observables Ol (left hand side) and Or (right hand side). Thus, applied to kaons the
hypothesis assumes the form

O(kn, ta; km, tb) = Ol(kn, ta) ·Or(km, tb). (5.20)

That is to say that there is no mutual dependence on the measurements of the
two sides: what Alice is measuring on her left hand side does not influence Bob’s
measurement on the right hand side.

Following the derivations in section 4.5.3 and assuming (5.20), one gets the rela-
tion

|O(kn, ta; km, tb)−O(kn, ta; km′ , td)|
+ |O(kn′ , tc; km′ , td) +O(kn′ , tc; km, tb)| = 2, (5.21)

where kn, km, kn′ and km′ are arbitrary quasispin eigenstates and ta, tb, tc, td are
four times. That is to say that Alice can choose among two settings, i.e. (kn, ta)
and (kn′ , tc), while Bob can choose between (km, tb) and (km′ , td). It is important
to stress that (5.21) is not an inequality, since it contains pure states. This can be
shown when using all combinations of the values {−1} and {1} for the observables
and thus building the correlation function (5.20). To get an inequality we can
obtain the average M of the correlation function O when considering N identical
measurements and thus denoting with Oi the value of the correlation function made
in the ith experiment:

M(kn, ta; km, tb) =
1

N

N
∑

i=1

Oi(kn, ta; km, tb) (5.22)

One notices that now |M | ≤ 1. Performing the same operations when construct-
ing the generalized Bell-CHSH inequality in chapter 3, we finally get

|M(kn, ta; km, tb)−M(kn, ta; km′ , td)|
+ |M(kn′ , tc; km′ , td)−M(kn′ , tc; km, tb)| ≤ 2. (5.23)

Thus, (5.23) is a CHSH inequality equal to the spin-1
2
or photon case, as long as

we identify M(kn, ta; km, tb) ≡M(n,m).

5.3 The CHSH inequality

Using the quantum mechanical probabilities introduced in chapter 5.1.2 we can re-
express the expectation value, i.e.
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MQM(kn, ta; km, tb) = Pn,m(Y, ta;Y, tb) + Pn,m(N, ta;N, tb)

−Pn,m(Y, ta;N, tb)− Pn,m(N, ta;Y, tb). (5.24)

This form is valid for both, quantum mechanics and local realistic theories. Using

Pn,m(Y, ta;Y, tb) + Pn,m(N, ta;N, tb)

+Pn,m(Y, ta;N, tb) + Pn,m(N, ta;Y, tb) = 1, (5.25)

we finally get

M(kn, ta; km, tb) = −1 + 2 {Pn,m(Y, ta;Y, tb) + Pn,m(N, ta;N, tb)} . (5.26)

Now comes the point: setting (5.24) into the CHSH inequality, i.e.

|M(n,m)−M(n,m′)| ≤ 2± |M(n′,m′) +M(n′,m)| (5.27)

we finally arrive to

|Pn,m(Y, ta;Y, tb) + Pn,m(N, ta;N, tb)− Pn,m′(Y, ta;Y, td)− Pn,m′(N, ta;N, td)|
≤ 1± {−1 + Pn′,m(Y, tc;Y, tb) + Pn′,m(N, tc;N, tb)

+Pn′,m′(Y, tc;Y, td) + Pn′,m′(N, tc;N, td)},
(5.28)

or rewritten (and expressed as (5.23)):

S(kn, km, kn′ , km′ ; ta, tb, tc, td) =

‖Pn,m(Y, ta;Y, tb) + Pn,m(N, ta;N, tb)− Pn,m′(Y, ta;Y, td)− Pn,m′(N, ta;N, td)‖
+‖ − 1 + Pn′,m(Y, tc;Y, tb) + Pn′,m(N, tc;N, tb) + Pn′,m′(Y, tc;Y, td) + Pn′,m′(N, tc;N, td)‖ ≤ 1.

(5.29)

This is a CHSH inequality which can now be tested.

5.4 Results and Problems

Since the files with the whole results are posted in the APPENDIX we will just
consider the way of proceeding.

At first we start with the most general state (in the KSKL-basis), i.e.

|ψ〉 = r1e
iϕ1 |KSKS〉+ r2e

iϕ2 |KSKL〉+ r3e
iϕ3 |KLKS〉+ r4e

iϕ4 |KLKL〉 . (5.30)

However, we do not use the direct method (as introduced in 5.1.1 by calculating
the norm) for calculating the {Y, Y }, {N,N}, {Y,N} and {N, Y } probabilities.
We trace over the product of the density matrix created by the most general state
(5.30) and a matrix standing for the particular probabilities, which we will call
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PY Y , PY N , PNY and PNN , respectively. The reason for this way of proceeding
is that we can set both the density matrix and the matrix standing for the particular
probabilities into the most general form and thus just by varying over angles having
the capability to choose the quasi-spin states which we want. Anyway, the {Y, Y },
{N,N}, {Y,N} and {N, Y } probabilities are now accessible over

{Y, Y } = Tr [PY Y · ρ(tl, rr)]
{N,N} = Tr [PNN · ρ(tl, rr)]
{Y,N} = Tr [PY N · ρ(tl, rr)]
{N, Y } = Tr [PNY · ρ(tl, rr)] . (5.31)

Now, equipped with these details, we construct the expectation value introduced
in (5.24), namely:

MQM(kn, ta; km, tb) = Pn,m(Y, ta;Y, tb) + Pn,m(N, ta;N, tb)

−Pn,m(Y, ta;N, tb)− Pn,m(N, ta;Y, tb). (5.32)

5.5 A New Formalism: Schrödinger Picture → Heisenberg Picture

To be able to compute the values for the Bell inequality more easily, we have to
change the formalism. It would be convenient if we could get a factorization inside
of the expectation value, to get it from a form like (5.24), i.e.

M(kn, ta; km, tb) = Pn,m(Y, ta;Y, tb) + Pn,m(N, ta;N, tb)

−Pn,m(Y, ta;N, tb)− Pn,m(N, ta;Y, tb) (5.33)

into

E = Tr (Oeff |ψ〉 〈ψ|) , (5.34)

where we could insert all information like time evolution into the effective oper-
ator Oeff while ψ can set to be the most general state. What we want to perform
is the switch from the Schrödinger picture into the Heisenberg picture. By this, we
can avoid the expanding of the Hilbert space (as introduced in (3.1.3), while the
mathematical computation gets simpler.

Again, our prospect of the expectation value E is of the form:

Is the state in the quasispin kn at time tn (Yes) or is it not (No)?

As in (5.24), this has the following form:

E(kn, tn) = P (Yes : kn, tn)− P (No : kn, tn)
P (No:kn,tn)+P (Yes:kn,tn)=1

= 2 P (Yes : kn, tn)− 1. (5.35)
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To switch from the Schrödinger picture to the Heisenberg picture, we commence
writing down the probabilities via the trace over the products of a quasispin kn and
a general initial state ρ, i.e.

P (Yes : kn, tn) = Tr(

(

|kn〉〈kn| 0
0 0

)

ρ(tn))

= ρSS · cos2
αn
2
e−ΓStn + ρLL · sin2 αn

2
e−ΓLtn

+ ρSL · cos
αn
2

sin
αn
2
ei(φn−tn) · e−Γtn

+ (ρSL · cos
αn
2

sin
αn
2
ei(φn−tn) · e−Γtn)∗ . (5.36)

Again, we use the parametrizations

|kn〉 = cos αn

2
|KS〉+ sin αn

2
· eiφn |KL〉 , (5.37)

while ρ(t) is derived from the master equation in section 3.1.4, see (3.53). Also a
convenient re-scaling was used, i.e.

∆m := 1 and Γi :=
Γi
∆m

. (5.38)

Now we extract the time dependence from the initial state ρ and insert it into
a time dependent effective operator with dimensions 2 x 2. The expectation value
now gets into

E(kn, tn) = Tr(Oeff (αn, φn, tn) ρ), (5.39)

which is the desired result. In this way, we have found an effective operator in the
Heisenberg picture (for the complete form of Oeff see the APPENDIX), which allows
to handle with general decaying systems and which has besides the computational
and interpretative advantage a conceptual one, since we can easy generalize the
description of multipartite systems. This is made simply by using the usual tensor
product structure, i.e.

E(kn1
, tn1

; kn1
, tn1

; . . . ; knk
, tnk

) (5.40)

= Tr(Oeff (αn1
, φn1

, tn1
)⊗Oeff (αn2

, φn2
, tn2

)⊗ · · · ⊗Oeff (αnk
, φnk

, tnk
) ρ) .

Equipped with this we can start testing Bell inequalities for arbitrary choices.

5.6 Results

Using the effective operator framework we can rather rewrite the Bell-CHSH in-
equality in a witness type, i.e using the Bell operator

Belleff = Oeff
n ⊗ (Oeff

m −Oeff
m′ ) +Oeff

n′ ⊗ (Oeff
m +Oeff

m′ ), (5.41)

in the sense that any local realistic hidden parameter theory has to satisfy
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|Tr(Belleffρ)| ≤ 2 . (5.42)

Furthermore the effective operator framework allows us to analyze the operator
Oeff itself for the purpose of examining the local behavior of the whole kaon system.
Details hereto are given in the paper [40].

Let us come back to the Bell-CHSH inequality in a witness type. For this we will
decompose the effective operator Oeff into the Pauli matrices σ, i.e.

Oeff (αn, φn, tn) = −n0(αn, tn) + ~n(αn, φn, tn)~σ (5.43)

with

∆Γ =
ΓL − ΓS

2
, (5.44)

~n(αn, φn, tn) = e−Γtn





cos(tn + φn) sin(αn)
sin(tn + φn) sin(αn)

sinh(∆Γtn) + cosh(∆Γtn) cosαn



 , (5.45)

while

n0(αn, tn) = 1− |~n(αn, φn, tn)|. (5.46)

After forming the Bell operator (5.41) we let MATHEMATICA find the minimal
and maximal eigenvalues of Belleff and plot the evolution after varying in time.
Fig. 5.1 shows the results.
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Figure 5.1: Violations of the Bell inequality by the strangeness eigenstates (i.e. αn = αm = αnn =
αmm = π/2) at {tn = tm = tn′ = tm′ = t}, (b) {tn = 0, tm = t, tn′ = t, tm′ = 0} and (c)
{tn = t, tm = 0, tn′ = 0, tm′ = t}.

One can see that the new formalism opens up new possibilities of approaching
and examining the kaon-entanglement question. Since we can now handle arbitrary
Bell inequalities, it has become possible to analyze and investigate the Belleff itself.
Thus it has become a goal to find a proper Bell inequality which can be violated
and tested in accelerator facilities.

5.7 The Entropic Uncertainty Relation

The last part of the thesis will be the discussion of the entropic uncertainty relation
(introduced by D. Deutsch [36], improved in Ref. [37] and proven by Ref. [38]). It
is given by

H(Oeff
n ) +H(Oeff

m ) ≥ −2 log2
(

max
i,j
{|〈χin|χjm〉|}

)

(5.47)

where

H(Oeff
n ) = −p(n) log2 p(n)− (1− p(n)) log2(1− p(n)) (5.48)

is the binary entropy for a certain prepared state ρ. In case of pure states, the p(n)’s
are given by

p(n) = |〈χn|ψ〉|2, (5.49)

i.e. are the probability distribution associated with the measurement of Oeff
n for ψ

(provided, Oeff
n is 2x2) . One finds that the maximal value of the right hand side

of (5.47) is obtained for

|〈χn|χm〉| =
1√
2
. (5.50)

In this case the two observables are called complementary to each other (priorly, their
eigenvalues have to be nondegenerate). The detailed discussion can be found at [40].
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We will now discuss what is learnt by finding a certain quasispin |kn〉 at a certain
time tn or not which can correspond to a certain decay channel, compared to the
situation to find a km at the creation point tm = 0 or not. If, for example, Alice
prepares a certain state ψ and sends it to Bob. What Alice wants is to minimize
her uncertainty concerning Bob’s measurement result. Bob will now carry out one
of the two measurements Oeff

n , Oeff
m and announce his choice to Alice (n or m). The

result Alice can get is bounded by the equation (5.47).

In paper [40] the right hand side of the entropic uncertainty relation (5.47) was
investigated. One found that for unstable systems, the right hand side, given by

max

{

〈χ1
m|χ1

n〉, 〈χ1
m|χ2

n〉, 〈χ2
m|χ1

n〉, 〈χ2
m|χ2

n〉
}

, (5.51)

has |χ1
n〉 = |χ(αn, φn, tn)〉 and |χ2

n〉 = |χ(αn+π, φn+2tn,−tn)〉 being the eigenvectors
of the effective operators or - in other words - the quasispin propagating forward or
backward in time, respectively. Below, Fig. 5.2 shows the results.

Figure 5.2: The lower bound of the entropic quantum uncertainty inequality (5.47) is plotted in
case of a strangeness event at t = 0 compared to a strangeness event at a later time. Thus the
observables are given by A = Oeff (

π
2
, φn, 0) and B = Oeff (

π
2
, φm, t) with φn = φm = 0. The

solid blue line shows when the eigenvectors both propagating forward in time or both propagating
backward in time overlap maximally, whereas the red dashed line shows the case when forward
and backward propagating quasipins overlap. While figure (a) depicts the kaon system, figure
(b) shows the case of a slow decaying system or all other meson systems (i.e . Bd, Bs,..), that is
∆Γ = 0.
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In the APPENDIX, the investigation of the left hand side of (5.47) can be found.
When plotting one of the entropies (5.48), one finds for strangeness events that this
matches with what we have learned from Fig. 5.2. This is shown below in Fig. 5.3.
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Figure 5.3: Since the entropy tends to zero at t=0, figure (a) and (b) correspond to the same
questions as in Fig.5.2. Again, (a) depicts the kaon system while (b) shows the case of a slow
decaying system or all other meson systems.
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6 Summary, Outlook and Conclusion

Physicists still agonize over the one question: how does the world work? On the
one hand it seems we have come quite near to an answer, waiting for a positive
reply from the LHC in Genf, verifying that we have understood the concept of mass
by finding the famous Higgs particle. On the other hand, however, we are in our
infancy when trying to combine the two great theories of physics, quantum theory
and theory of relativity. But what we can admit at any rate is: there is progress.
Not least because of our understanding that we got from the kaon system: on one
side it brought us into the concept of strangeness, while helping us to comprehend
and analyze the important CP violation on the other side. Of course, there is even
more to say about kaons, for example the concept of entanglement. This is the main
topic of this diploma thesis.

After introducing the history of the detection of kaons in chapter I, we started
with the recapitulation of basic mathematics in order to describe kaons in a proper
way in chapter II. After pointing out crucial effects like strangeness oscillation and
regeneration, we learned about the important formalism of describing the time evo-
lution of kaons (including the decay property). Investigating the decay property,
we also learned that decay can act as some kind of decoherence. In chapter III,
however, we started rolling out the concept of entanglement. Here we could set
up an inequality (the Bell inequality), allowing us to determine that local realistic
theories (LRT) are not compatible with the existing world around us. In chapter
IV we then had to describe the time evolution for entangled kaons for setting up a
Bell inequality sensitive to kaon properties. In this way we were able to investigate
the entanglemend of kaons. We realized that we had to change the formalism to be
capable of handling the decay of kaons when dealing with Bell inequalities.

Armed with this new effective formalism, we are able to make more precise inves-
tigations of the kaon entanglement, especially by investigating the Bell inequality
(operator) in the whitness type. Moreover, using this formalism we are able to
handle arbitrary Bell inequalities and therefore we are searching for a suitable and
useful Bell inequality when regarding the difficult accelerator experiments. Hence, it
seems to be only a matter of time before finding a proper Bell inequality which can
be violated by (relative) simple experimental set up. Last but not least we discussed
Heisenberg’s uncertainty relation adapted to kaons.
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A Effective Operator Formalism
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B Former Formalism
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C Heisenberg’s Uncertainty Relation
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Er hatte sich sehnlichst gewünscht, meinen Abschluss der Physik mitzuerleben.
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Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia and

University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria.

A general and computable criterion for k-(in)separability in continuous multipartite quantum sys-
tems is presented. The criterion can be experimentally implemented with a finite and comparatively
low number of local observables. We discuss in detail how the detection quality can be optimised.

I. INTRODUCTION

Quantum entanglement has been studied quite intensely over the last few decades, resulting in a rather wide
understanding of simple entangled systems (i.e. bipartite systems of low dimensions, especially two qubit systems;
for an overview, see e.g. Ref. [1]). However, still many puzzling features and open questions are revealed in more
general systems, such as multipartite systems or systems of high (or, in particular, infinite) dimensions.
In multipartite entangled systems (which are of grave importance to technological applications of quantum informa-
tion theory, such as quantum secret sharing [2] or quantum computation [3]), complications arise (among others) due
to the multiple different forms in which a multipartite state can be entangled (see e.g. [4, 5]). In particular, while a
bipartite state is either entangled or separable, a multipartite state can be partially entangled (as investigated e.g.
in Refs [6, 7]), as opposed to genuinely multipartite entangled (see e.g. [8–12]).
In infinite-dimensional (continuous) systems, problems arise because certain notions of finite-dimensional systems are
no longer met (see e.g. [13, 14]). Nevertheless, many concepts have been generalised from the finite-dimensional case
to the continuous one during the last decade, most noteworthy the PPT-criterion [15] and the scheme of quantum
teleportation [16] (which has also already been experimentally verified [17]).
Rather seldomly are systems considered which contain both these sets of difficulties (e.g. [18, 19], although
multipartite continuous quantum systems do hold the possibility for certain applications, such as certain kinds of
teleportation networks [20].
In this letter, we use a general framework (which was introduced in Refs. [21, 22] for finite-dimensional systems) to
formulate a criterion for partial separability (k-separability) of arbitrary states of a continuous variable multipartite
system, thus proving implicitly, that the framework also works perfectly well in infinite-dimensional systems.
The article is organised as follows. In section II, the basic definitions and terminology will be reviewed, such that
in section III we can present our criterion for continuous variable k-separability, which is the main result of this
letter. In section IV, a guideline to the application of the criterion will be given (such that its detection power can
be optimally used). The criterion and its application are then demonstrated in two exemplary cases in section V.
Finally, in section VI we show how the criterion can also be implemented experimentally.
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II. BASIC DEFINITIONS

In order to formulate our result, we firstly need to define the concept of k-separability for continuous variable
systems. A general n-partite pure quantum state can be written in the form

|Ψ〉 =
∫ ∞

−∞
dnx Ψ(x1, x2, · · · , xn) |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 . (1)

It is called k-separable (k ≤ n) iff its distribution function factorises into k factors, i.e.

Ψ(x1, x2, · · · , xn) = Ψ1({xi1}) ·Ψ2({xi2}) · · · · ·Ψk({xik}) (2)

where {xij} denotes a set of coordinates, i.e. corresponds to one or several particles. That is, a pure state is called
k-separable iff there is a k-partition ({xi1}|{xi2}| · · · |{xik}) with respect to which it is separable. If k = n then the
state is called fully separable, i.e. there is no entanglement in the multipartite system. If k = 2 the state is called
biseparable, if it is not biseparable, it is called genuinely multipartite entangled. Genuine multipartite entanglement
is found to be a key ingredient for many quantum algorithms, see e.g. Ref. [23]. In finite-dimensional systems, there
exist different inequivalent classes of genuine multipartite entanglement, e.g. the GHZ-class, the W -class or the
Dicke-class. Such substructures are only known for very special and rather simple systems (see e.g. [4, 24, 25]) and
it is not known how this generalises for continuous variable systems.

Example: A tripartite pure state can be either fully separable, i.e. k = n with the 3-partition (x1|x2|x3),
or 2–separable (biseparable, i.e. k=2) with one of the three possible partitions (x1x2|x3), (x1x3|x2) or (x1|x2x3), or
genuinely multipartite entangled (k = 1) with the partition (x1x2x3).

For mixed states, we can extend this definition in a straightforward way. A mixed n-partite quantum state
has the general form

ρ =

∫ ∞

−∞
dnx dnx′ ρ(x1, x

′
1, x2, x

′
2, . . . , xn, x

′
n) |x1〉〈x′

1| ⊗ |x2〉〈x′
2| ⊗ · · · |xn〉〈x′

n| (3)

It is called k-separable, iff it has a decomposition into k-separable pure states, i.e. iff it can be written as a convex
combination of pure k-separable states:

ρ =

∫

dα pα |Ψα〉〈Ψα| (4)

where pα is a probability distribution (i.e. pα ≥ 0 and
∫∞
−∞ dα pα = 1) and |Ψα〉 is k-separable for all α.

Note that a k-separable mixed state may not be separable with respect to any partition, since the pure states
in its decomposition may be separable with respect to different k-partitions (i.e. |Ψα〉 may split into different
partitions for different α). The concept of k-separability is of high impoertance to quantum information theory,
since many of its applications rely on specific kinds of states (in particular on genuinely multipartite entangled states).

III. CRITERION FOR K-SEPARABILITY

In Refs. [21, 22], a framework for constructing very general separability criteria for finite Hilbert spaces was
introduced. We now extend this framework such that we can apply it to continuous quantum systems. The main
result of this paper is an inequality, given in the following theorem, which is satisfied for all k–separable states, such
that any violation implies that the state under investigation is not k–separable.

Theorem: All k-separable states ρ satisfy the inequality

√

〈Φ|ρ⊗2Ptotal|Φ〉 −
∑

{α}

(

k
∏

i=1

〈Φ|P †
αi
ρ⊗2Pαi

|Φ〉
)

1
2k

≤ 0 (∗)

where |Φ〉 = |φ1〉 ⊗ |φ2〉 is an arbitrary fully separable state, Pαi
is a permutation operator permuting the αi-th

elements of |φ1〉 and |φ2〉, Ptotal wholly permutes the |φi〉 and the sum runs over all k-partitions {α}.
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Proof: Firstly, observe that the left hand side of the inequality (∗) is a convex quantity. Thus, its validity
for mixed states follows from its validity for pure states. To prove the latter, let us assume w.l.o.g. that a given pure
state ρ = |Ψ〉〈Ψ| is separable with respect to the partition α′. Therefore, the permutation operators corresponding
to this partition do not change the two copy state

Pα′

i
|Ψ〉⊗2 = P †

α′

i

|Ψ〉⊗2 = |Ψ〉⊗2 ∀ i . (5)

Furthermore, note that the total permutation acts as

Ptotal|φ1〉 ⊗ |φ2〉 = |φ2〉 ⊗ |φ1〉 (6)

then the inequality reads

|〈φ1|ρ|φ2〉| −
√

〈φ1|ρ|φ1〉〈φ2|ρ|φ2〉 −
∑

{α6=α′}

(

k
∏

i=1

〈Φ|P †
αi
ρ⊗2Pαi

|Φ〉
)

1
2k

≤ 0 . (7)

It follows from the Cauchy-Schwarz inequality that the first two terms cancel (because the pure state ρ is a projector).
Since the remaining sum has strictly nonnegative terms with an overall negative sign, the whole inequality has to be
satisfied for ρ which are separable with respect to the partition α′.

IV. OPTIMISING THE DETECTION QUALITY

Evidently, the detection quality of inequality (∗) strongly depends on the choice of the separable state |Φ〉. Unlike
in the case of discrete systems, numerical optimisation is quite out of the question, as the number of optimisation
parameters would be infinite. However, there is a quite intuitive way of choosing |Φ〉 effectively. Given the state ρ in
question, |Φ〉 should satisfy the following conditions:

C1: |Φ〉 has to be fully separable, i.e. |Φ〉 =
⊗n

i=1
|φ1i〉 ⊗

⊗n

i=1
|φ2i〉.

C2: |φ1〉 and |φ2〉 should be orthogonal in each subsystem, i.e. 〈φ1i|φ2i〉 = 0 ∀ i.

C3: Each |φji〉 should be sharp, i.e. |φij〉 =
∫∞
−∞ dx δ(x− xij)|x〉 = |xij〉 for some xij .

C4: |φ1〉 and |φ2〉 should be chosen such that |〈φ1|ρ|φ2〉| is maximal.

Let us illustrate the background of these conditions.
Condition C1 is necessary for the criterion (ineq. (∗)) to remain valid for all k-separable states and thus is rather a
technical requirement.
Condition C2 guarantees that the permutation operators used in the criterion (∗) have maximal impact, such
that a maximal violation of the inequality can be achieved. Each pair |φji〉 (j = 1, 2) is responsible for detecting
entanglement in the i-th subsystem. Thus, non-orthonormality of this pair of vectors means non-optimal detection
of entanglement in this subsystem.
Condition C3 stems from the fact, that any average is always lower than (or equal to) its highest contribution. Any
distribution containing more than one element leads to an averaging in the scalar products in (∗), which can never
increase violation of the inequality, but will in general decrease it.
Condition C4 incorporates the dependance of |Φ〉 on the investigated state and thus most of the subtleties involved.
The first term in ineq. (∗) (and the only positive one) is the absolute value of the scalar product 〈φ1|ρ|φ2〉. Evidently,
for the inequality to be violated, this product needs to be as big as possible. This corresponds to chosing |φ1〉 and
|φ2〉 as two of the main contributing vectors of the investigated state.
Although this procedure might not be unique (i.e. might not unambiguously lead to a definite choice of |Φ〉), it
reveals the optimal structure of |Φ〉 and thus drastically reduces the number of optimisation parameters to a finite
set, which can be optimised numerically (e.g. by means of the method introduced in [26]) or even analytically. This
will be demonstrated in the next section.
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V. EXAMPLES

Consider the family of tripartite states (i.e. n=3)

|ω〉 = 1√
N

∫ ∞

−∞
d3x e−

x
2
1

2σ e−
(x1−x2)2+(x1−x3)2

2ǫ

(|x1 −∆〉 ⊗ |x2〉 ⊗ |x3 +∆〉+ |x1〉 ⊗ |x2 +∆〉 ⊗ |x3 −∆〉+ |x1 +∆〉 ⊗ |x2 −∆〉 ⊗ |x3〉+ (8)

|x1 +∆〉 ⊗ |x2〉 ⊗ |x3 −∆〉+ |x1〉 ⊗ |x2 −∆〉 ⊗ |x3 +∆〉+ |x1 −∆〉 ⊗ |x2 +∆〉 ⊗ |x3〉)
where

N = 2π
3
2 ǫ
√
σ(e−

2∆2

ǫ + 2e−
∆2

2ǫ + 2e−
∆2(ǫ+5σ)

ǫσ + 4e−
∆2(ǫ+5σ)

4ǫσ + 2e−
∆2(ǫ+9σ)

4ǫσ + 2e−
∆2(ǫ+18σ)

4ǫσ + 2
√
2e

σ−2∆(∆ǫ+6σ)
8ǫσ ) (9)

is a normalisation constant and all parameters σ, ǫ and ∆ are larger than or equal to zero. Note that

lim
ǫ→0

(2πǫ)−
1
2 e−

x
2

2ǫ = δ(x) (10)

is the Dirac delta function, such that in this limit, for ∆ = 0 the state |ω〉 is a generalisation of the GHZ-state to
continuous systems:

lim
ǫ→0

|ω〉∆=0 =
1√
N

∫ ∞

−∞
dx e−

x
2

2σ |x〉 ⊗ |x〉 ⊗ |x〉 (11)

while for ∆ > 0 it is a generalisation to the W-state, since it is genuinely multipartite entangled and has entangled
reduced density matrices.
In the following we are interested in the introduced tripartite states mixed with Gaussian distributed noise

ρmix = (2πδ)−
3
2

∫ ∞

−∞
d3x e−

x
2
1+x

2
2+x

2
3

2δ |x1〉〈x1| ⊗ |x2〉〈x2| ⊗ |x3〉〈x3| (12)

i.e. the state under investigation is

ρ = p |ω〉〈ω|+ (1 − p) ρmix . (13)

A. GHZ-like state (∆ = 0)

In the case ∆ = 0, the state |ω〉 assumes the comparatively simple form

|ω〉 = 1√
N

∫ ∞

−∞
d3x e−

x
2
1

2σ e−
(x1−x2)2+(x1−x3)2

2ǫ |x1〉 ⊗ |x2〉 ⊗ |x3〉 (14)

As this state’s distribution function has its peak at x1 = x2 = x3 = 0 and is correlated such that all three coordinates
are most likely to be very close to each other (or even equal for ǫ → 0), |Φ〉 is best chosen to be of the form

|Φ〉 = |φ1〉 ⊗ |φ2〉 with

|φ1〉 = |x0〉 ⊗ |x0〉 ⊗ |x0〉 (15)

|φ2〉 = | − x0〉 ⊗ | − x0〉 ⊗ | − x0〉
for some x0 6= 0 (due to condition C2). The optimal value for x0 can be obtained from analytical or numerical
optimisation. Since for σ → 0 this state becomes separable (as can be seen directly by substituting eq. (10) in eq.
(14)), we are only interested in σ > 0 and thus can, without loss of generality, define σ = 1 and measure all lengths
in units of

√
σ.

In order to estimate the best value for x0, we first assume a pure state, i.e. p = 1 and investigate the detection
behaviour of the criterion (∗) for different values of the two remaining parameters ǫ and x0 (as illustrated in Fig. 1).
It can be seen that the optimal choice of x0 depends on ǫ only slightly and is best chosen in the range 0.7 ≤ x0 ≤ 1.2.
In the further study of this state, we will chose x0 = 1, such that only parameters of the state remain.
Now, we can investigate the mixed state case (i.e. p < 1). In Fig. 2 the detection range of our criterion (∗) for k = 2
and k = 3 is illustrated .
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FIG. 1: (Colour online) Illustration of the detection parameter space of the criterion (∗) for k = 2 and the state |ω〉, Eq. (14),
with p = 1 and ∆ = 0. The state is detected to be genuinely tripartite entangled wherever the graph is above zero (i.e. in the
green plotted region). It can be seen that the optimal choice for x0 is between 0.7 and 1.2, depending only slightly on the value
of ǫ.

FIG. 2: (Colour online) Illustration of the detection quality of ineq. (∗) for k = 2 (red) and k = 3 (blue) for the state (14) for
σ = 1, x0 = 1 and different values of p, ǫ and δ. For p = 1 the whole state space is detected to be entangled (k ≤ 2) and to be
genuinely multipartite entangled (k = 1) for ǫ < 4.648. For lower values of p, still very large portions of the state space are
detected to be genuinely multipartite entangled (red regions, k = 2) or at least entangled (red and blue regions (k ≥ 2)).

B. W-like state (∆ = 1)

Let us now investigate a more general state, namely the case ∆ 6= 0. Without loss of generality, we can set ∆ = 1
and thus measure all lengths in units of ∆. The optimal choice of |Φ〉 of course has to be a generalisation of the one
used in the previous section, which coincides with it for ∆ = 0. The choice is quite straightforward, since the state (8)
contains six terms. Combination of any two of them leads to the desired high-magnitude off-diagonal density matrix
element, the only restrictions being conditions C1-C3. This leads to

|Φ〉 = |φ1〉 ⊗ |φ2〉 with

|φ1〉 = |x0 +∆〉 ⊗ |x0〉 ⊗ |x0 −∆〉 (16)

|φ2〉 = | − x0 −∆〉 ⊗ | − x0 +∆〉 ⊗ | − x0〉
In this rather complicated case, numerical optimisation is necessary for achieving optimal detection quality, since
the optimal x0 depends strongly on the other parameters (more than in the previous case with ∆ = 0). However,
even without numerical optimisation and using only two different choices of x0 (namely x0 = 0 and x0 = 1.5) the
detection range of our criterion (∗) is very wide, as illustrated in Fig. 3.

C. Non-Gaussian States

The above two examples belong to the class of Gaussian states, which have always been the main focus of research
in the field of continuous variable entanglement (see e.g. Refs. [27–30]). However, recently questions regarding non-
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FIG. 3: (Colour online) Detection quality of the inequality (∗) for the family of the tripartite states (8) with ∆ = 1, δ = 1 and
x0 = {0, 1.5} (where x0 = 0 detects better if σ < 1, even for very small p, but ceases to detect for large ǫ; and x0 = 1.5 detects
better for σ > 1 and still detects a considerable amount of entanglement for large ǫ). The red area is detected to be genuinely
multipartite entangled (2-inseparable) and the blue and red areas are detected to be entangled (3-inseparable).

Gaussian entangled states have attracted a lot of interest within the scientific community. Since the criterion presented
in this paper is - unlike most other criteria for continuous variable entanglement - not tailored specifically for Gaussian
states, we will also show its detection quality for non-Gaussian states.
Consider the state

ρ = p|ω〉〈ω|+ (1 − p)ρmix (17)

where

|ω〉 = 1

N1

∫

d3xΘ(β − |x1|)Θ(ǫ− |x1 − x2|)Θ(ǫ − |x1 − x3|)|x1〉|x2〉|x3〉 (18)

ρmix =
1

N2

∫

d3xΘ(δ − |x1|)Θ(δ − |x2|)Θ(δ − |x3|)|x1〉〈x1| ⊗ |x2〉〈x2| ⊗ |x3〉〈x3| (19)

with

N1 = 8ǫ2β N2 = 8δ3 β, ǫ, δ > 0 (20)

where Θ(x) is the Heaviside-function. This state is a non-Gaussian modification of the GHZ-like state (14).
Using (15) and chosing x0 appropriately, the criterion (∗) reads

0 ≤







p
8ǫ2β

if ǫ
2
< β and δ < β

p
8ǫ2β

− 1−p
8δ3

if ǫ
2
< β ≤ δ

0 else

(21)

where the first condition is always positive for p > 0 and thus indicates genuine multipartite entanglement, the yield
of the second condition depends on the parameters and the third condition can never be violated. In particular,
the first condition detects a large portion of the state space to be genuinely multipartite entangled already for
infinitesimal p > 0.

Since the state discussed above is only a rather simple example and not very close to experimental realisa-
tion, let us illustate the detection quality of our criterion for another non-Gaussian state, which is more likely to be
implemented experimentally [31, 32], namely

|ω〉 = a1a2a3
1√
N

∫ ∞

−∞
d3x e−

x
2
1

2σ e−
(x1−x2)2+(x1−x3)2

2ǫ |x1〉 ⊗ |x2〉 ⊗ |x3〉 (22)

where the ai are annihilation operators and

N =
1

8
π3/2ǫσ3/2(ǫ2 + 6ǫσ + 15σ2) (23)

mixed with Gaussian noise, as in (13) with (12). This state also represents a modification of (14) and can therefore
be detected by the same choice of |Φ〉.
Without loss of generality, we set σ = 1 and thus measure all lengths in units of

√
σ. For δ ≤ 3σ

2
, the whole state

space with p > 0 is detected to be genuinely multipartite entangled, independantly of ǫ. For δ > 3σ
2
, still large areas

of the state space are detected, as illustrated in Fig. 4.
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FIG. 4: (Colour online) Illustration of the detection parameter space of the criterion (∗) for k = 2 and the state ρ, Eq. (13)
where |ω〉 as in (22), with σ = 1 and δ = 3. The curve indicates the critical proportion p, i.e. the detection threshold for
genuine multipartite entanglement.

VI. EXPERIMENTAL IMPLEMENTATION

Since it is quite important for multipartite entanglement criteria to not only work in theory but also to be imple-
mentable experimentally (without resorting to a full state tomography, since this would mean an infinite number of
required measurements), let us illustrate how this can be done for our criterion, ineq. (∗), for the pure example state
from section VA, the GHZ–like state (14). Generalisation to other states is straightforward, but might be rather
cumbersome.
While the criterion detects optimally for sharp |Φ〉, such states cannot be measured physically, since detectors always
have a finite size. We will thus assume

|Φ〉 = |α〉|α〉|α〉|β〉|β〉|β〉 (24)

with

|α〉 = 1√
ξ

∫

dx Θ

(

x− x0 +
ξ

2

)

Θ

(

x0 +
ξ

2
− x

)

|x〉 (25)

|β〉 = 1√
ξ

∫

dx Θ

(

x+ x0 +
ξ

2

)

Θ

(

−x0 +
ξ

2
− x

)

|x〉

where Θ(x) is the Heaviside distribution and ξ is the size of the detector, for example a charge-coupled device (CCD).
The (2n − 1) scalar products needed for computation of ineq. (∗) thus take forms like

〈φ1|ρ|φ2〉 =
(

πǫ

2ξ
3
2

)2 ∫ x0+
ξ

2

x0− ξ

2

dx e−
x
2

2σ

(

Erf

(

2x0 − 2x+ ξ

2
√
2ǫ

)

+ Erf

(

2x0 − 2x− ξ

2
√
2ǫ

))2

·

∫ x0+
ξ

2

x0− ξ

2

dy e−
y
2

2σ

(

Erf

(

2x0 − 2y + ξ

2
√
2ǫ

)

+ Erf

(

2x0 − 2y − ξ

2
√
2ǫ

))2

(26)

〈Φ|P †
1 ρP1|Φ〉 =

(

πǫ

2ξ
3
2

)2
(

∫ −x0+
ξ

2

−x0− ξ

2

dx e−
x
2

2σ

(

Erf

(

2x0 − 2x+ ξ

2
√
2ǫ

)

+ Erf

(

2x0 − 2x− ξ

2
√
2ǫ

))2
)2

where

Erf(a) =
2√
π

∫ a

0

dx e−x2

(27)

is the Gaussian error function. These integrals can easily be computed numerically, given the parameters used in the
experimental setup, which allows for a simple prediction of measurement outcomes. We now explicitly show how to
write ineq. (∗) in terms of expectation values of local observables in the exemplary three particle case. To that end
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let us first define the following local observables constructed from the finite sized detectors

σx = |α〉〈β| + |β〉〈α|
σy = i|α〉〈β| − i|β〉〈α| (28)

σz = |α〉〈α| − |β〉〈β| ,

which are the Pauli operators of the two dimensional subspace spanned by |α〉 and |β〉. Using the short hand notation

ijk := 〈σi ⊗ σj ⊗ σj〉ρ , (29)

where σ1 := 1, we can explicitly rewrite ineq.(∗) for k = 2 and n = 3 as

1

8
|xxx − yyx− yxy − xyy + i(yyy − xxy − xyx− yxx)| −

1

8
(
√

(111 + zz1− z1z − 1zz + 11z − 1z1− z11 + zzz)(111 + zz1− z1z − 1zz − 11z + 1z1 + z11− zzz) + (30)
√

(111− zz1 + z1z − 1zz + 11z − 1z1 + z11− zzz)(111− zz1 + z1z − 1zz − 11z + 1z1− z11 + zzz) +
√

(111− zz1− z1z + 1zz + 11z + 1z1− z11− zzz)(111− zz1− z1z + 1zz − 11z − 1z1 + z11 + zzz)) ≤ 0 .

It is also possible to decompose the inequalities in terms of local expectation values for larger n or different k in a
straightforward way. This however yields rather cumbersome expressions, which is why they are not presented then
here in full detail.

Experimental measurement uncertainties can be estimated by means of the Gaussian law of error propagation, which
states that the measurement uncertainty Ξ of a function f of several arguments xi is given by

Ξ =

√

∑

i

(

∂f

∂xi

ζi

)

(31)

where ζi are the respective measurement uncertainties of the xi.
We will assume that all expectation values xi = 〈αi|ρ|αi〉 underlie the same relative uncertainty (i.e. ζi/〈αi|ρ|αi〉 = ζ
is independant of i), such that only two uncertainty parameters remain, namely ζ and o, the latter being the absolute
uncertainty of the first term in ineq. (∗). Now, the measurement uncertainty Ξ of the whole inequality is given by

Ξ2 = o2 +
∑

α,i





1

2k

2k
∏

j=1

(xj)
(1/2k)

xi

ζi





2

= o2 +
1

4k2

∑

α,i

2k
∏

j=1

(xj)
1/kζ2 ≤ o2 +

ζ2γ

8k3
(32)

where the ineqality follows from the fct that a geometric mean is maximal whenever all its factors are equal, and

γ =

k
∑

l=1

(−1)k−iin−1

(i− 1)!(k − i)!
(33)

is the number of all k-partitions of an n-partite system.
In our above examples (i.e. if n = 3 and k = 2 or k = 3), the second term in (32) is much smaller than the first,
such that the measurement uncertainty of the complete expression (∗) is approximately equal to the uncertainty of
its first term: Ξ ≈ o, which makes this kind of experimental uncertainty easy to deal with.

Another kind of complication that is to be expected in experimental realisations (e.g. in quantum optics) are
imperfect detectors. These correspond to nonperfect projective measurements, i.e. each scalar product 〈α|ρ|β〉 is
multiplied by some factor 0 ≤ τ ≤ 1. Since the whole inequality is now linear in τ , this does not alter the violation
or nonviolation of the inequality, but reduces the magnitude of violation linearly.

VII. SUMMARY

We present a criterion for k-separability in multipartite continuous variable systems. It is an inequality which
is satisfied for all k–separable states, i.e. any violation implies that the state is not k–separable. The criterion
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particularly allows to distinguish between biseparable states (which can only be used in few applications) and
genuinely multipartite entangled ones (which are a basic building piece for several applications of quantum infor-
mation theory which go beyond the potential of classical systems). We show how the inequality can be optimised
by chosing an appropriate state |Φ〉 (for which we give four explicit conditions) and thus being left with a reduced
(finite) number of optimisation parameters, which can be computed. We analyse two different families of states,
which may be considered to be generalisations of the most famous genuinely multipartite states in finite quantum
information theory, the GHZ-type entangled states and the W -type entangled states. Our criterion easily detects a
large parameter space of entangled states when mixed with Gaussian noise. Since no comparable criteria exist, it can
not be said how tight these detection thresholds are.
Moreover, we explicitly show how the developed criterion for k-separability in multipartite continuous variable
systems can be rewritten by local expectations values, thus how this criterion can be experimentally implemented.
In summary, we presented a computable criterion for detecting k-inseparability (and particularly genuine multipartite
entanglement) in continuous variable systems which can be experimentally implemented by finitely many local
observables.
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Heisenberg’s Uncertainty Relation and Bell Inequalities in High Energy Physics

An effective formalism for unstable two-state systems∗

Antonio Di Domenico1,† Andreas Gabriel2,‡ Beatrix C. Hiesmayr2,3,§ Florian Hipp2,¶ Marcus Huber2,∗∗
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2University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria. and

3Research Center for Quantum Information, Institute of Physics,

Slovak Academy of Sciences, Dùbravskà cesta 9, 84511 Bratislava, Slovakia

An effective formalism is developed to handle decaying two-state systems. Herewith, observables
of such systems can be described by a single operator in the Heisenberg picture. This allows for using
the usual framework in quantum information theory and, hence, to enlighten the quantum feature
of such systems compared to non–decaying systems. We apply it to systems in high energy physics,
i.e. to oscillating meson–antimeson systems. In particular, we discuss the entropic Heisenberg
uncertainty relation for observables measured at different times at accelerator facilities including
the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator–form of Bell
inequalities for systems in high energy physics is presented, i.e. a Bell–witness operator, which
allows for simple analysis of unstable systems.

PACS numbers:

I. INTRODUCTION

The theoretical framework introduced in this paper can be applied in general to a broad variety unstable systems,
however, the focus is on meson-antimeson systems and their information theoretic interpretations of certain quantum
features of single and bipartite (entangled) systems. In particular, we discuss meson-antimeson systems, e.g. the
neutral K–meson or B–meson system, which are very suitable to discuss various quantum foundation issues (see
e.g. Refs [1–23]). Neutral kaons are popular research objects in Particle Physics as they were the first system that
was found to violate the CP symmetry (C . . . charge conjugation; P . . . parity), i.e. the imbalance of matter and
antimatter. They are also well suited to investigate a possible violation of the CPT symmetry (T . . . time reversal);
see e.g. Refs. [21, 22].
Neutral meson–antimeson systems are oscillating and decaying two-state systems and can also described as bipartite

entangled systems opening the unique possibility to test various aspects of quantum mechanics also for systems not
consisting of ordinary matter and light.
The purpose of this paper is twofold. Firstly to enlighten that these systems provide different insights into quantum

theory which are not available in other quantum systems via exploring e.g. the Heisenberg uncertainty relation in
its entropic formulation or Bell inequalities which prove that there are correlations stronger than those obtainable in
classical physics. Secondly, we introduce a comprehensive and simple mathematical framework which is close to the
usual framework to handle stable systems and, therefore, allows for developing novel tools and potential applications.
In Section II we introduce how the time evolution of neutral kaons are usually obtained. In Section III we discuss
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what kind of questions can be raised to the quantum system at accelerator facilities and what is measured at such
facilities. In particular, we outline that there are two different measurement procedures not available to other quantum
systems. Then the effective formulation of the observables corresponding to a certain question raised to the quantum
system is introduced (Section IV), which is our main result. Then we analyze different measurement settings and
their uncertainty (Section V). In particular, we show that CP violation introduces an uncertainty in the observables
of the mass eigenstates and, herewith, in the dynamics. Last but not least we proceed to bipartite entangled systems
and present the generalized Bell–CHSH inequality for meson–antimesons systems [28] in a witness form (Section VI).
This allows to derive the maximal and minimal bound of the Bell inequality by simply computing the eigenvalues of
the effective Bell operator, i.e. without relaying on optimizations over all possible initial states.

II. THE DYNAMICS OF DECAYING AND OSCILLATING SYSTEMS

The phenomenology of oscillation and decay of meson-antimeson systems can be described by nonrelativistic quan-
tum mechanics effectively, because the dynamics are rather depending on the observable hadrons than on the more
fundamental quarks. A quantum field theoretical calculation showing negligible corrections can e.g. be found in
Refs. [22, 23].
Neutral meson M0 are bound states of quarks and antiquarks. As numerous experiments have revealed the particle

state M0 and the antiparticle state M̄0 can decay into the same final states, thus the system has to be handled as a
two state system similar to spin 1

2
systems. In addition to being a decaying system these massive particles show the

phenomenon of flavor oscillation, i.e. an oscillation between matter and antimatter occurs. If e.g. a neutral meson is
produced at time t = 0 the probability to find an antimeson at a later time is nonzero.
The most general time evolution for the two state system M0 − M̄0 including all its decays is given by an infinite–

dimensional vector in Hilbert space

|ψ̃(t)〉 = a(t)|M0〉+ b(t)|M̄0〉+ c(t)|f1〉+ d(t)|f2〉+ . . . (1)

where fi denote all decay products and the state is a solution of the Schrödinger equation (~ ≡ 1)

d

dt
| ˜ψ(t)〉 = −iĤ| ˜ψ(t)〉 (2)

where Ĥ is an infinite-dimensional Hamiltonian operator. There is no method known how to solve this infinite set
of coupled differential equations affected by strong dynamics. The usual procedure is based on restricting to the
time evolution of the components of the flavour eigenstates, a(t) and b(t). Then one uses the Wigner-Weisskopf
approximation and can write down an effective Schrödinger equation

d

dt
|ψ(t)〉 = −i H |ψ(t)〉 (3)

where |ψ〉 is a two dimensional state vector and H is a non-hermitian Hamiltonian. Any non-hermitian Hamiltonian
can be written as a sum of two hermitian operators M,Γ, i.e. H =M + i

2
Γ, where M is the mass-operator, covering

the unitary part of the evolution and the operator Γ describes the decay property. The eigenvectors and eigenvalues
of the effective Schrödinger equation, we denote by

H |Mi〉 = λi |Mi〉 (4)

with λi = mi+
i
2
Γi. For neutral kaons the first solution (with the lower mass) is denoted by KS, the short lived state,

and the second eigenvector by KL, the long lived state, as there is a huge difference between the two decay constants
ΓS ≃ 600ΓL.
Certainly, the state vector is not normalized for times t > 0 due to the non- hermitian part of the dynamics.

Different strategies have been developed to cope with that. We present here one which is based on the open quantum
formalism, i.e. we show that the effect of decay is a kind of decoherence.
In quantum information theory and in experiments one often has to deal with situations where the system under

investigation unavoidable interacts with the environment which is in general inaccessible. In this case only the joint
system evolves according to the Schrödinger equation, it is unitary. The dynamics of the system of interest then
is given by ignoring all degrees of freedom of the environment, by tracing them out. Such systems are called open
quantum systems and under certain assumptions they may be described by a so called master equation.
In Ref. [24] the authors showed that systems with non-hermitian Hamiltonians generally can be described by a

master equation. As time evolves the kaon interacts with an environment which causes the decay. In our case the
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environment plays the role as the QCD vacuum in quantum field theory, but has not to be modeled, only the generators
have to be defined describing the effect of the interaction. In particular the time evolution of neutral kaons can be
described by the master equation (found by Lindblad [25] and, independently, by Gorini, Kossakowski and Sudarshan
[26])

d

dt
ρ = −i[H, ρ]−D[ρ] (5)

where the dissipator under the assumption of complete positivity and Markovian dynamics has the well known

general form D[ρ] = 1

2

∑

j(A
†
jAjρ + ρA†

jAj − 2AjρA†
j) with Aj are the generators. The density matrix ρ lives

on Htot = Hs

⊕

Hf where s/f denotes “surviving” and “decaying” or “final” components, and has the following
decomposition

ρ =

(

ρss ρsf
ρ†sf ρff

)

(6)

where ρij with i, j = s, f denote 2×2 matrices. The Hamiltonian H is the mass matrixM of the effective Hamiltonian
H extended to the total Hilbert space Htot and Γ of Heff defines a Lindblad operator by Γ = A†A, i.e.

H =

(

H 0
0 0

)

, A =

(

0 0
A 0

)

with A : Hs → Hf .

Rewriting the master equation for ρ, Eq. (6), on Htot

ρ̇ss = −i[H, ρss]−
1

2
{A†A, ρss} , (7)

ρ̇sf = −iHρsf −
1

2
A†Aρsf , (8)

ρ̇ff = AρssA
† , (9)

we notice that the master equation describes the original effective Schrödinger equation (3) but with properly nor-
malized states (see Ref. [24]). By construction the time evolution of ρss is independent of ρsf , ρfs and ρff . Further
ρsf , ρfs completely decouples from ρss and thus can without loss of generality be chosen to be zero since they are not
physical and can never be measured. With the initial condition ρff (0) = 0 the time evolution is solely determined by
ρss—as expected for a spontaneous decay process—and formally given by integrating the components of Eq. (9). It
proves that the decay is Markovian and moreover completely positive.
Explicitly, the time evolution of a neutral kaon is given in the lifetime basis, {KS,KL}, by (

ρij = 〈Ki|ρ|Kj〉

, ρSS + ρLL = 1):

ρ(t) =









e−ΓStρSS e−i∆mt−ΓtρSL 0 0
ei∆mt−Γtρ∗SL e−ΓLtρLL 0 0

0 0 (1 − e−ΓLt)ρLL 0
0 0 0 (1− e−ΓSt)ρSS









. (10)

Note that, formally, one also obtains off–diagonal contributions in the ρff component, but as they cannot be measured
we set them to zero without loss of generality.
The extension to bipartite systems is straightforward, i.e. by

H −→ H⊗ 1+ 1⊗H
A0 −→ A0 ⊗ 1+ 1⊗A0 (11)

but we will not need to use that as our introduced effective formalism for single particles (Section IV) generalizes
simply for any multipartite systems, i.e. as in the usual way by simple tensor products.
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III. WHAT CAN BE MEASURED AT ACCELERATOR FACILITIES?

There are obviously two different questions that in principle can be raised to the quantum system evolving in time:

• Are you a certain quasispin |kn〉 at a certain time tn or not?

• Or: Are you a certain quasispin |kn〉 or its orthogonal state |k⊥n 〉 (〈k⊥n |kn〉 = 0) at a certain time tn?

where we denote by a quasispin kn any superposition of the mass eigenstates which are the solutions of the effective
Schrödinger equation (3).
For non-decaying systems these questions are equivalent, but for decaying systems the second one means that you

ignore all cases in which the neutral kaons decayed before the measurement, thus one does not take all information
available into account. For studying certain quantum properties of these systems neglecting this kind of information
is of no importance, however, e.g. if one is interested to show that there exists no explanation in terms of local hidden
parameters for bipartite entangled decaying states, one is not allowed to selected only the surviving pairs, because
one would not test the whole ensemble (consult Refs [27–29] for more details).
Let us here also remark on what is meant by a measurement at a certain time tn. Indeed, one does not measure

time, but a certain final decay product or an interaction taking place at a certain position, point in space, in the
detector. To be more precise one detects often only secondary reaction products and with the energy-momentum
signature reconstructs the final states. Knowing the production point and thus the distance traveled as well as the
momentum one can infer the proper time passed between production and decay or interaction.
There are in principle two different options which are denoted as an active measurement procedure and a passive

measurement procedure, for reasons which may become clear in a moment, how to obtain the quasispin content of
neutral mesons. This is a remarkable difference and gives raise to two further options of quantum erasure [31, 32]
proving the very concept of a quantum eraser, i.e. sorting events to different available information. This kaonic
quantum eraser is also in the future work programme of the upgraded KLOE detector which will start in 2011 (for a
detailed program see Ref. [1]).
For neutral kaons there exist two physical alternative bases. The first basis is the strangeness eigenstate basis

{|K0〉, |K̄0〉}. It can be measured by inserting along the kaon trajectory a piece of ordinary matter. Due to strangeness
conservation of the strong interactions the incoming state is projected either onto K0 by K0p→ K+n or onto K̄0 by
K̄0p → Λπ+, K̄0n → Λπ0 or K̄0n → K−p. Here nucleonic matter plays the same role as a two channel analyzer for
polarized photon beams.
Alternatively, the strangeness content of neutral kaons can be determined by observing their semileptonic decay

modes (see Eq.(27)). Obviously, the experimenter has no control over the kaon decay process, neither of the mode
nor of the time. The experimenter can only sort at the end of the day all observed events in proper decay modes
and time intervals. We call this procedure opposite to the active measurement procedure described above a passive
measurement procedure of strangeness.
The second basis {KS,KL} consists of the short– and long–lived states having well defined masses mS(L) and decay

widths Γ(S)L, which are the solution of the Hamiltionian under investigation. It is the appropriate basis to discuss the
kaon propagation in free space, because these states preserve their own identity in time. Due to the huge difference
in the decay widths the short lived states KS decay much faster than the long lived states KL. Thus in order to
observe if a propagating kaon is a KS or KL at an instant time t, one has to detect at which time it subsequently
decays. Kaons which are observed to decay before ≃ t + 4.8 τS have to be identified as short lived states KS, while
those surviving after this time are assumed to be long lived states KL. Misidentifications reduce only to a few parts
in 10−3 (see also Refs. [31, 32]). Note that the experimenter does not care about the specific decay mode, she or he
records only a decay event at a certain time. This procedure was denoted as an active measurement of lifetime.
Neutral kaons are famous in Particle Physics as they violate the CP symmetry, where C stands for charge conjugation,

i.e. interchanging a particle with an antipartice state and P for parity. So far no violation of the combined symmetry
CPT has been found. Conservation of the CPT symmetry requires that the time reversal symmetry T has to be
broken. The break of the T invariance is far from being straightforwardly to be proven experimentally, because
for a decay progress A −→ B + C practical considerations prevent one from creating the time reversed sequence
B + C −→ A. The CPLEAR collaboration was able to experimentally prove the T violation. At the first side it
might be surprising that one finds a T violation in a framework which is completely controlled by non-relativistic
quantum mechanics. The apparent paradox is resolved by remembering that the dynamics of a quantum system is
given by the equation of motions and the boundary conditions. In particular, the fact that the relative weights of the
mass eigenstates are different for the states of the two strangeness states leads to the observable effects. Or differently
stated the T violation follows from the CP asymmetry in the initial states. Certainly, to understand and handle
these symmetry violations we have to use the framework provided by relativistic quantum field theories. The author
of Ref. [33] argued that the measured T violation at accelerator facilities introduce destructive interference between
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different paths that the universe can take through time, she concludes that only two possible paths are surviving, one
forward in time, the other one backward in time.
Since the neutral kaon system violates the CP symmetry (which will be discussed in Section IVB) the mass

eigenstates are not strictly orthogonal, 〈KS |KL〉 6= 0. However, neglecting CP violation —it is of the order of
10−3— the KS ’s are identified by a 2π final state and KL’s by a 3π final state. One denotes this procedure as a
passive measurement of lifetime, since the kaon decay times and decay channels used in the measurement are entirely
determined by the quantum nature of kaons and cannot be in any way influenced by the experimenter.
We have introduced two conceptually different procedures –active and passive– to measure two different observ-

ables of the neutral kaon systems: strangeness or lifetime. The active measurement of strangeness is monitored
by strangeness conservation in strong interactions while the corresponding passive measurement is assured by the
∆S = ∆Q rule, i.e. the change of the strangeness number and the change of the charge in a process. Active and
passive lifetime measurements are efficient thanks to the smallness of ΓL

ΓS
and the CP violation parameter, respectively.

This will be deeper analyzed in terms of the Heisenberg uncertainty relation in the entropic version in Section V.
Active measurements are possible due to a huge difference in lifetime of the two mesons and, therefore, in practice

are available. Thus the neutral kaon system is special concerning its natural constance of the dynamic and, therefore,
we mostly stick to this system.
The set of passive measurements is not solely limited to the two above described basis choices, but are all possible

decay modes of neutral mesons which e.g. single out different CP violation mechanisms. These decay modes can
always be related to a certain quasispin at the moment of decay. Let us assume we find the final state f at a time tn
and we produced at time t = 0 a quasispin km, the decay rate which is the derivative of the probability is given as an
integral over the amplitude squared

Γ(km(tn) −→ f) =

∫

dph(f)|〈f |T|km(t)〉|2 (12)

where T is the transition operator and the integral is taken over the phase space. To connect the quasipin with the
final state, we have to require

〈k⊥n |kn〉
!
= 0 and 〈f |T|k⊥n 〉

!
= 0 −→ Pf + Pf⊥ = 1 (13)

and therefore any final decay product corresponds to a certain quasispin, i.e. a certain superposition of the mass
eigenstates, e.g. a two pion event corresponds to the quasispin

|Kπ0π0〉 ≡ |kn〉 = α00 |KS〉+ β00 |KL〉 . (14)

Summarizing, we have for neutral kaons different conceptual measurement procedures if we neglect CP violation.
Active measurements are e.g. required when testing Bell inequalities (see Section VI) while the existence of these
two procedures opens new possibilities for kaonic quantum erasure experiments which have no analog for any other
two-level quantum systems [31, 32] and are in the experimental programme of the KLOE-2 collaboration [1]. If one
is interested in other features of the quantum system under investigation or including CP violation one can consider
all decay channels. For example we will calculate the Heisenberg uncertainty due to CP violation in the case of two
pion events (see Section V). If not stated differently we neglect CP violation.

IV. EFFECTIVE OPERATORS - A HEISENBERG PICTURE FOR DECAYING SYSTEMS

To develop an effective formalism to derive any expectation value for the questions “Are you in the quasispin kn at
time tn (Yes) or not (No)” of decaying systems

E(kn, tn) = P (Yes : kn, tn)− P (No : kn, tn)

P (No:kn,tn)+P (Yes:kn,tn)=1
= 2 P (Yes : kn, tn)− 1 (15)

we have to derive the probability to find a certain quasispin kn at time tn for a general initial state ρ, i.e.

P (Yes : kn, tn) = Tr(

(

|kn〉〈kn| 0
0 0

)

ρ(tn))

= ρSS · cos2 αn
2
e−ΓStn + ρLL · sin2 αn

2
e−ΓLtn

+ ρSL · cos αn
2

sin
αn
2
ei(φn−tn) · e−Γtn

+ (ρSL · cos αn
2

sin
αn
2
ei(φn−tn) · e−Γtn)∗ . (16)
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where we used the following parameterizations

|kn〉 = cos αn

2
|KS〉+ sin αn

2
· eiφn |KL〉 . (17)

and ρ(t) is derived from the master equation (5). Moreover, we used a convenient re-scaling, i.e. ∆m := 1 and,
consequently the decay constants are re-scaled by the same factor Γi :=

Γi

∆m
.

From that we can extract a time dependent effective operator in dimensions 2× 2

E(kn, tn) = Tr(Oeff (αn, φn, tn) ρ) (18)

where ρ is any initial state which can be taken in dimensions 2× 2 as at t = 0 the decay products have not be taken
into account. Herewith, we found for general decaying systems an effective operator in the Heisenberg picture which
has besides the computational and interpretative advantage a conceptual one (discussed in the following Sections),
i.e. it generalizes for multipartite systems simply by the usual tensor product structure

E(kn1 , tn1 ; kn1 , tn1 ; . . . ; knk
, tnk

) (19)

= Tr(Oeff (αn1 , φn1 , tn1)⊗Oeff (αn2 , φn2 , tn2)⊗ · · · ⊗Oeff (αnk
, φnk

, tnk
) ρ) .

To derive these expectation values is rather cumbersome, e.g. for bipartite systems one has to derive the following
four probabilities (Pi = |ki〉〈ki|)

P (Y es : kn, tn;Y es : km, tm) = TrA(PnΛ
single

tn
[TrB[PmΛbipartite

tm
[ρ]]])

P (Y es : kn, tn;No : km, tm) = TrA(PnΛ
single

tn
[TrB[(1− Pm)Λbipartite

tm
[ρ]]])

P (No : kn, tn;Y es : km, tm) = TrA((1− Pn)Λ
single

tn
[TrB[PmΛbipartite

tm
[ρ]]])

P (No : kn, tn;No : km, tm) = TrA((1− Pn)Λ
single

tn
[TrB[(1− Pm)Λbipartite

tm
[ρ]]])

(20)

to obtain the expectation value E(kn, tn; km, tm) = P (Y es : kn, tn;Y es : km, tm) + P (No : kn, tn;No : km, tm) −
P (Y es : kn, tn;No : km, tm)− P (No : kn, tn;Y es : km, tm), where Λsingle and Λbipartite are the Liouville operators of
the two master equations (5), respectively (tn > tm).

A. What Observables are in Principle Accessible in Decaying Systems?

Explicitly the effective operator for a two state decaying system decomposed into the Pauli matrices σ is given by

Oeff (αn, φn, tn) = −n0(αn, tn)1+ ~n(αn, φn, tn)~σ (21)

with ∆Γ = ΓL−ΓS

2

~n(αn, φn, tn) = e−Γtn





cos(tn + φn) sin(αn)
sin(tn + φn) sin(αn)

sinh(∆Γtn) + cosh(∆Γtn) cosαn



 (22)

and n0(αn, tn) = 1 − |~n(αn, φn, tn)|. For spin 1

2
systems, the most general observable is given by ~n~σ where any

normalized quantization direction (|~n| = 1) parameterized by polar angles αn and φn can be chosen. In case of
decaying systems we can choose in principle αn and φn but for tn > 0 the “quantization direction” is no longer
normalized and its loss results in an additional contribution in form of “white noise”, i.e. the expectation value has
a contribution independent of the initial state.

E(αn, φn, tn) = Tr(Oeff (αn, φn, tn)ρ)

= −n0(αn, tn) + Tr(~n(αn, φn, tn)~σρ) . (23)

One recognizes the involved role of the time-evolution: It is damping the “Bloch” vector ~n by e−Γtn and is responsible
for the rotation or oscillation in the system, represented by the polar angle Φ = tn + φn in the x, y equatorial plane
(x and y component of the “Bloch” vector ~n corresponding to the strangeness eigenstates). In case of ∆Γ 6= 0 the
time dependence of the z component is more involved. This complex behaviour is responsible for certain quantum
features of the system which we will analyze in the following part of the paper.
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Let us discuss the eigenstates of the effective operator in order to gain a more physical intuition. For that we derive
its spectral decomposition

Oeffn ≡ Oeff (αn, φn, tn) (24)

= (2|~n(αn, φn, tn)| − 1) · |χ(αn, φn, tn)〉〈χ(αn, φn, tn)|
+(−1) · |χ(αn + π, φn + 2tn,−tn)〉〈χ(αn + π, φn + 2tn,−tn)|

with

|χn〉 ≡ |χ(αn, φn, tn)〉 (25)

=
1

√

N(αn, tn)

{

cos
αn
2

· e−
ΓS

2 tn |KS〉+ sin
αn
2
ei(tn+φn) · e−

ΓL

2 tn |KL〉
}

with N(αn, tn) = |~n(αn, φn, tn)|2 .

The first eigenvector can be interpreted as a quasispin kn evolving in time according to the dynamics given by the
non-hermitian Hamiltonian and normalized to surviving kaons, i.e. to

|χn〉 ≡ |kn(tn)〉

=
1

√

N(αn, tn)
{cos αn

2
eiλ

∗

S
tn |KS〉+ sin

αn
2
eiφn · eiλ∗

L
tn |KL〉} . (26)

The second eigenvector related to the time–independent eigenvalue can be interpreted besides being orthogonal to
the normalized quasispin kn as a quasispin evolving backward in time, but with no phase changes, which we discuss
in the next Section IVB in more detail.

B. CP Violation in Mixing and the Effect on the Time Evolution

In 1964 Cronin and Fitch discovered in a seminal experiment that in the neutral kaon system the symmetry CP,
where C stands for charge conjugation, i.e. interchanging a particle state by an antiparticle state, and P is parity
operator, is broken, for which they got the Nobel Prize in 1980. The CP violation (for a review see e.g. Ref. [34]) and
its origin is still a hot discussed subject in particle physics. These open questions are addressed by recently approved
projects as KLOE-2 and NA-62 for kaons and SuperBelle and SuperB for B–mesons.
The CP violation in mixing is e.g. measured by the semileptonic decay channels, i.e a strange quark s decays weakly

as constituent of K̄0 :

-s
⌣ ⌣ ⌣

⌢ ⌢
W−���

u

���

e
−

- ν̄e

Due to their quark content the kaon K0(s̄d) and the anti–kaon K̄0(sd̄) have the following definite decay channels:

K0(ds̄) −→ π−(dū) l+ νl where s̄ −→ ū l+ νl

K̄0(d̄s) −→ π+(d̄u) l− ν̄l where s −→ u l− ν̄l , (27)

with l either muon or electron, l = µ, e . Here the validity of the ∆S = ∆Q rule is assumed. The Standard Model
predicts negligible violations of this selection rule. When studying the leptonic charge asymmetry

δ =
Γ(KL → π−l+νl)− Γ(KL → π+l−ν̄l)

Γ(KL → π−l+νl) + Γ(KL → π+l−ν̄l)
, (28)

we notice that l+ and l− tag K0 and K̄0, respectively, in the KL state, and the leptonic asymmetry (28) is expressed
by the probabilities |p|2 and |q|2 of finding a K0 and a K̄0, respectively, in the KL state

δ =
|p|2 − |q|2
|p|2 + |q|2 , (29)
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i.e. the mass eigenstates and strangeness eigenstates are connected by

|KS〉 =
1

N

{

p|K0〉 − q|K̄0〉
}

, |KL〉 =
1

N

{

p|K0〉+ q|K̄0〉
}

. (30)

The weights p = 1+ ε, q = 1− ε with N2 = |p|2+ |q|2 contain the complex CP violating parameter ε with |ε| ≈ 10−3.
CPT invariance is assumed (T . . . time reversal). The short–lived K–meson decays dominantly into KS −→ 2π with
a width or lifetime Γ−1

S ∼ τS = 0.89× 10−10 s and the long–lived K–meson decays dominantly into KL −→ 3π with

Γ−1

L ∼ τL = 5.17 × 10−8 s. However, due to CP violation we observe a small amount KL −→ 2π. Therefore, CP
violation expresses that there is a difference between a world of matter and a world of antimatter.
Let us now derive the change due to CP violation to the effective observable. Firstly note that the length of the

Bloch vector ~n can be rewritten by the sum of two probabilities, i.e.

|~n| = 1− n0 = |〈kn|KS(tn)〉|2 + |〈kn|KL(tn)〉|2 . (31)

The symmetry violation CP results in a non-orthogonality of the mass eigenstates, i.e. each amplitude leads to an
interference term

|〈kn|KS(tn)〉|2 = eΓStn | cos αn
2

+ δ · sin αn
2
e−iφn |2

|〈kn|KL(tn)〉|2 = eΓLtn |δ · cos αn
2

+ sin
αn
2
e−iφn |2 (32)

and, therefore, changes the oscillation behaviour of the system but as well the loss in the decaying system. Note that
CP violation may as well change the state under investigation, i.e. the expectation value gets as well a “contribution”
of the symmetry violation from the initial state.
The effective operator changes in detail by (we suppress the dependence on the parameters αn, φn, tn)

nCP
1 = n1 − e−Γtn(2δ · cos tn + δ2 · sinαn cos(tn − φn))

nCP
2 = n2 − e−Γtn(2δ · sin tn + δ2 · sinαn sin(tn − φn))

nCP
3 = n3 − (δ · (e−ΓStn − e−ΓLtn) sinαn cosφn

+ δ2 · 1
2
(e−ΓStn − e−ΓLtn − (e−ΓStn + e−ΓLtn) cosαn) .

(33)

The spectral decomposition shows that the time dependent eigenvalue is changed by CP violation, confirming its
observable character, but it has the same dependence from the Bloch vector as in case of CP conservation (compare
with Eq. (24))

λCP1 = −1 + 2 |~nCP | = 1− 2 nCP
0

λCP2 = −1 . (34)

The two eigenvectors of the effective observable change accordingly

|χCP,1
n 〉 =

1
√

N(t)

{

〈KS |kn〉 · eiλ
∗

S
tn |K1〉+ 〈KL|kn〉 · eiλ

∗

L
tn |K2〉

}

|χCP,2
n 〉 =

1
√

N(−t)

{

−〈KL|kn〉∗ · eiλStn |K1〉+ 〈KS |kn〉∗ · eiλLtn |K2〉
}

with

N(t) = e−ΓStn |〈KS |kn〉|2 + e−ΓLtn |〈KL|kn〉|2 . (35)

Note that if we parameterize the quasispin in the CP basis, |kn〉 = cos αn

2
|K1〉 + sin αn

2
· eiφnt |K2〉, we find that the

weights do not add up to one generally

N(0) = |〈KS |kn〉|2 + |〈KL|kn〉|2 = 1 + δ · sinαn cosφn . (36)
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V. THE ENTROPIC UNCERTAINTY RELATION FOR SINGLE AND BIPARTITE SYSTEMS

The entropic uncertainty relation of two non-degenerate observables is given by (introduced by D. Deutsch [35],
improved in Ref. [36] and proven by Ref. [37])

H(Oeffn ) +H(Oeffm ) ≥ −2 log2

(

max
i,j

{|〈χin|χjm〉|}
)

(37)

where

H(Oeffn ) = −p(n) log2 p(n)− (1− p(n)) log2(1− p(n)) (38)

is the binary entropy for a certain prepared pure state ψ and the p(n)’s are the probability distribution associated
with the measurement of Oeffn for ψ, hence p(n) = |〈χn|ψ〉|2. This is a reformulation of the famous uncertainty
principle by Robertson [38], which can be found in most textbooks on quantum theory

(∆Oeffn )ψ · (∆Oeffm )ψ ≥ 1

2

∣

∣〈ψ|
[

Oeffn , Oeffm

]

|ψ〉
∣

∣ , (39)

where (∆A)2ψ = 〈A2〉ψ − 〈A〉2ψ are the mean square deviations. Choosing, the operators, position x̂ and momentum
p̂, the Robertson relation turns into the famous Heisenberg relation

∆x̂ ·∆p̂ ≥ 1

2
. (40)

The maximal value of the right hand side of the entropic uncertainty relation is obtained for

|〈χn|χm〉| =
1√
2
, (41)

in this case the the two observables are commonly called complementary to each other (their eigenvalues have to be
nondegenerate), e.g. if the operators are σx and σz. In general a non-zero value of the right hand side of Eq.(37)
means that the two observables do not commute, i.e. it quantifies the complementarity of the observables. The binary
entropies on the left hand side quantify the gain of information on average when we learn about the value of the
random variable associated to Oeffn . Alternatively, one can interpret the entropy as the uncertainty before we obtain
the result of the random variable.
The reformulation of the Heisenberg relation (37) has —besides its different information-theoretic interpretation

and its stronger bound [39]— the advantage that the right hand side of the inequality is independent of the prepared
state and only depends on the eigenvectors of the observables, hence puts a stronger limit on the extent to which the
two observables can be simultaneously peaked.
Remarkably, the right hand side of the entropic uncertainty relation also does not depend on the eigenvalues

(except to test the non-degeneracy), this means that if the state is prepared in an eigenstate say of Oeffn then the two
eigenvalues of Oeffm are equally probable as measured values, i.e. the exact knowledge of the measured value of one
observable implies maximal uncertainty of the measured value of the other, independent of the eigenvalues.

A. An Information Theoretic View on Measurements at Different Times at Accelerator Facilities

Particle detectors at accelerator facilities detect or reconstruct different decay products at different distances from
the creation point, usually by a passive measurement procedure, more rarely by an active measurement procedure.
Let us here discuss what is learnt by finding a certain quasispin |kn〉 at a certain time tn or not which can correspond
to a certain decay channel, compared to the situation to find a km at the creation point tm = 0 or not. Certainly, this
result also quantifies our uncertainty before we learn the result (Yes, No) at tn and (Yes, No) at tm. In particular, if
we compare observables of same quasispin at different time, we obtain the uncertainty due to the time evolution.
Differently stated, we can view it in the following way [40], two experimenters, Alice and Bob, choose two different

measurements corresponding to the observables Oeffn , Oeffm . Alice prepares a certain state ψ and sends it to Bob.
Bob carries out one of the two measurements Oeffn , Oeffm and announces his choice n or m to Alice. She wants to
minimize her uncertainty about Bob’s measurement result. Alice’s result is bounded by the equation (37).
In case of unstable systems the right hand side of the entropic uncertainty relation (37), for which we have to find

the maximum, is given by

max

{

〈χ1
m|χ1

n〉, 〈χ1
m|χ2

n〉, 〈χ2
m|χ1

n〉, 〈χ2
m|χ2

n〉
}

(42)
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FIG. 1: Here the lower bound of the entropic quantum uncertainty inequality (37) is plotted in case of a strangeness event
at t = 0 compared to a strangeness event at a later time, i.e. for the observables A = Oeff (

π
2
, φn, 0) and B = Oeff (

π
2
, φm, t)

with φn = φm = 0, π for (a) ΓS and (b) Γ≈ΓL including ΓS = ΓL = 0. The solid blue line shows when the eigenvectors both
propagating forward in time or both propagating backward in time overlap maximally, whereas the red dashed line shows the
case when forward and backward propagating quasipins overlap. Figure (b) shows the case of a slow decaying system or all
other meson systems, i.e. Bd, Bs, except maybe the D meson system for which not much precise data is available. If the decay
constants are considerably different there is always missing information in the system.
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FIG. 2: This graphs depict the lower bound of the entropic quantum uncertainty inequality (37) by comparing measurements
at time t = 0 to measurements at later times t for (a) short lived state (t = 0) versus short lived state at t, (b) long lived state
(t = 0) versus short lived state at t, (c) short lived state (t = 0) versus long lived state at t and (d) long lived state (t = 0)
versus long lived state at t. This shows the uncertainty introduced by breaking the CP symmetry in the time evolution. If Alice
and Bob agree to ask about a short lived state at the complementary time t = 5.4[t∆m] ≡ 11.4τS the uncertainty becomes the
maximal possible value. In case Alice and Bob agree to ask for any time t > 0 for a long lived state, the uncertainty is nonzero.

with |χ1
n〉 = |χ(αn, φn, tn)〉 and |χ2

n〉 = |χ(αn + π, φn + 2tn,−tn)〉 being the eigenvectors of the effective operators or
the quasispin propagating forward or backward in time, respectively. Any product derives to

〈χ(αn, φn, tn)|χ(αm, φm, tm)〉 =
cos αn

2
cos αm

2
+ sin αn

2
sin αm

2
ei(tm−tn+φm−φn) · e−∆Γ(tn+tm)

1

2

√

1 + e−2∆Γtn + cosαn(1− e−2∆Γtn)
√

1 + e2∆Γtm − cosαm(1− e2∆Γtm)
.

(43)

In Fig. 1 we plotted the complementarity for the observable asking the question “Is the neutral kaon system in the
state |K0〉 or not at time t = 0” compared to the question “Is the neutral kaon system in the state |K0〉 or not at
time t”, i.e. comparing the complementary introduced by the time evolution in the case of strangeness measurements.
Here Fig. 1 (a) refers to the neutral kaon case and (b) to a slowly decaying system (ΓS → 100ΓS) or any of the
other meson systems ∆Γ = 0. One notices that for times being odd multiples of π

2
the complementary of the two

observables becomes minimal, while for even multiples it maximizes.
Asking about the mass-eigenstates we find no complementary of the observables for any time, this certainly only

changes if we include CP violation. The uncertainty, i.e. the overlap of the measurement of a short lived state at a
later time point to that at time zero, is moderated by δ, i.e. for small times the maximum is obtained by the overlap
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FIG. 3: The right hand side of the entropic quantum uncertainty inequality (37) for the two observables (a) Oeff (
π
2
, 0, 0) ⊗

Oeff (
π
2
, 0, t) versus Oeff (

π
2
, 0, t1)⊗ Oeff (

π
2
, 0, 0) and (b) Oeff (

π
2
, 0, 0) ⊗Oeff (

π
2
, 0, t) versus Oeff (

π
2
, 0, 0) ⊗Oeff (

π
2
, 0, t1) for

t1 = 0, t/4, . . . , t is plotted, where t1 = 0 is the dashed line. One recognizes that one can increase or decrease the maximal
uncertainty if the role of the first and second observable in the tensor product, i.e. Alice and Bob’s role, is changed.

of the first two eigenvalues Eq.(35)

∣

∣〈χCP,1(KS , tn)|χCP,1(KS , tm = 0)〉
∣

∣ =

∣

∣

∣e−
ΓS

2 tn + δ2e−itn · e−
ΓL

2 tn

∣

∣

∣

√

(1 + δ2)(e−ΓStn + δ2e−ΓLtn)
(44)

and the maximum uncertainty −2 log2 max{|〈χin|χjm〉|} is reached for the overlap 1√
2
for tn = 11.4τS and choosing the

CP violation parameter δ = 3.322 ·10−3 (world average [41]). This is just the case when the overlaps of all possibilities
are equal, i.e. the two bases are mutually unbiased bases (MUBS). The same complementary time tn = 11.4τS is
obtained when we compare the measurement of the long lived state at time tm = 0 and a measurement of the short
lived state. For the two other options the maximal uncertainty can never be reached. Initially, the uncertainty is zero
in case of measuring long lived states and then oscillates due to δ and reaches after tn = 11.4τS a constant value close
to zero. This is summarized in Fig. 2.
Certainly, at this time the probability to find a short lived state is for all practical purposes zero. Remember that

we have chosen for active measurements of lifetime a time of 4.8τS , which is the time when the probability of not
finding a short lived state when it was produced as a short lived state equals the probability to find a long lived state

when it was produced as a long lived state, i.e. 1− e−ΓSt !
= e−ΓLt. This time is by more than a factor 2 different to

the complementary time which strongly depends on the amount of CP violation. We can revert the issue and ask how
big δ needs to be in order that the two times would be equal: it would need to be 25 times the value of δ. Therefore,
active and passive measurements of lifetime are efficient.

B. The Uncertainty of Measurement Settings for Bipartite Kaons

The effective operator formalism guarantees that the tensor product structure is conserved, i.e. the most general
expectation value of a bipartite system is given by

E(kn, km) = Tr(Oeffn ⊗Oeffm ρ) (45)

for any initial bipartite state ρ. In this case one studies e.g. symmetry violations or Bell inequalities where one
compares measurements of different quasispins at different times. In this section we want to investigate the uncertainty
of such different measurement settings and herewith obtain a different view and intuition on how certain properties of
quantum states are revealed, in particular we will then proceed to analyze the maximum violation of a Bell inequality.
To compute the right hand side of the entropic uncertainty relation we have to find the maximum of all eigenvectors

of the operator On⊗Om which is straightforward as it is simply the product of the eigenvectors of the single operators
On/m of Alice and Bob, respectively

max

{

〈χim|χjn〉 · 〈χkm|χln〉
}

with i, j, k, l = 1, 2 . (46)

In Fig. 3 we show how the uncertainty is changed for different observables in the bipartite kaons system, which
gives an intuition when a certain Bell operator may yield a violation (see next Section VI).
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VI. THE BELL-CHSH INEQUALITY

In accelerator experiments one can produce a spin singlet state, e.g. by the decay of a Φ meson at the DAPHNE
machine. One has the same scenario as Einstein, Podolsky and Rosen considered in 1935 which we write down
for different quantum systems (spin– 1

2
, ground/excited state, polarisation, K–meson, B–mesons, molecules arriving

early/late [42] or single neutrons in an interferometer) to show its similarity:

|ψ−〉 =
1√
2

{

| ⇑〉l ⊗ | ⇓〉r − | ⇓〉l ⊗ | ⇑〉r
}

=
1√
2

{

|0〉l ⊗ |1〉r − |1〉l ⊗ |0〉r
}

=
1√
2

{

|H〉l ⊗ |V 〉r − |V 〉l ⊗ |H〉r
}

=
1√
2

{

|K0〉l ⊗ |K̄0〉r − |K̄0〉l ⊗ |K0〉r
}

=
1√
2

{

|B0〉l ⊗ |B̄0〉r − |B̄0〉l ⊗ |B0〉r
}

=
1√
2

{

|late〉l ⊗ |early〉r − |early〉l ⊗ |late〉r
}

=
1√
2

{

|I〉l ⊗ | ⇑〉r − |II〉l ⊗ | ⇓〉r
}

= . . . . (47)

Analog to entangled photon systems for these systems Bell inequalities can be derived, i.e. the most general Bell
inequality of the CHSH–type is given by (see Ref. [43])

Skn,km,kn′ ,km′
(t1, t2, t3, t4) =

∣

∣Ekn,km(t1, t2)− Ekn,km′
(t1, t3)

∣

∣

+|Ek
n′ ,km(t4, t2) + Ek

n′ ,km′
(t4, t3)| ≤ 2 . (48)

Here Alice can choose on the kaon propagating to her left hand side to raise the question if the neutral kaon is in
the quasispin |kn〉 = cos αn

2
|K0〉+ sin αn

2
eiφn |K̄0〉 or not, and how long the kaon propagates, the time tn. The same

options are given to Bob for the kaon propagating to the right hand side. As in the usual photon setup, Alice and
Bob can choose among two settings.
Differently to commonly investigated systems one has more options. One can vary in the quasispin space or vary

the detection times or both.
With our effective framework we can rewrite the Bell-CHSH-inequality in a witness type, i.e. with the Bell operator

Belleff = Oeffn ⊗ (Oeffm −Oeffm′ ) +Oeffn′ ⊗ (Oeffm +Oeffm′ ) (49)

any local realistic hidden parameter theory has to satisfy

|Tr(Belleffρ)| ≤ 2 . (50)

This operator form of the generalized Bell-CHSH inequality [28] gives us the opportunity to find for a given choice
of Bell settings without optimization over all possible initial states whether the Bell inequality can be violated. In
particular, the eigenvalues of the Bell operator give us the upper and lower bound that can be reached for the optimal
initial state, i.e. the one which maximizes or minimizes the Bell inequality. Determining whether a Bell inequality is
preserved or violated for a given state ρ is in general a high-dimensional nonlinear constrained optimization problem.
In Ref. [44] a numerical method was shown by introducing a proper parameterization [45] for unitary matrices to
derive bounds on Bell inequalities for any qudit system (d–level system). This certainly is a benefit of our introduced
effective formalism as optimization in this case is not needed. In any numerical optimization there is no guarantee
that the global extremum was reached. In some exemplary cases we checked for the agreement and in many case the
optimization failed.
We present first a generalized Bell inequality which has been discussed in literature [28, 29, 43, 46] and shows a

relation between CP violation and the nonlocality detected by the above Bell inequality. Then we proceed to a Bell
setting that can be realized in a direct experiment.
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A. A Bell Inequality Sensitive to CP Violation

Let us choose all times equal zero and choose the quasispin states kn = KS, km = K̄0, kn′ = km′ = K0
1 where K0

1

is the CP plus eigenstate.
In Ref. [43] the authors showed that after optimization the CHSH–Bell inequality can be turned for an initial spin

singlet state into

δ ≤ 0 (51)

where δ is the CP violating parameter in mixing, Eq.(28). Experimentally, δ corresponds to the leptonic asymmetry
of kaon decays which is measured to be δ = (3.322 ± 0.055) · 10−3. This value is in clear contradiction to the value
required by the CHSH-Bell inequality above, i.e. by the premises of local realistic theories! The result can be also
made stronger by changing the Bell setting by KS −→ KL, then one obtains δ ≥ 0, thus both CHSH-Bell inequalities
require

δ = 0 , (52)

i.e. any local realistic hidden variable theory is in contradiction to CP violation, a difference of a world of particles
and antiparticles. In this sense the violation of a symmetry in high energy physics is connected to the violation of a
Bell inequality, i.e. to nonlocality. This is clearly not available for photons, they do not violate the CP symmetry.
We also want to remark that the considered Bell inequality, since it is chosen at time t = 0 is connected to a test

of contextuality rather than nonlocality. Noncontextuality, the independence of the value of an observable on the
experimental context due to its predetermination —a main hypothesis in hidden variable theories— is definitely ruled
out! So the contextual quantum feature is demonstrated for entangled kaonic qubits.
Although the Bell inequality (51) is as loophole free as possible, the probabilities or expectation values involved are

not directly measurable, because experimentally there is no way to distinguish the short–lived state KS from the CP
plus state K0

1 directly.

B. A Bell Inequality Sensitive to Strangeness

Let us now proceed to another choice for the Bell inequality (48), i.e. all quasispins equal K̄0, but we are going to
vary all four times

SK̄0,K̄0,K̄0,K̄0(t1, t2, t3, t4) =

|E(K̄0, t1; K̄
0, t2)− E(K̄0, t1; K̄

0, t3)|+ |E(K̄0, t4; K̄
0, t2) + E(K̄0, t4; K̄

0, t3)|
≤ 2 . (53)

This has the advantage that it can in principle be tested in experiments. Alice and Bob insert at a certain distance
from the source (corresponding to the detection times) a piece of matter forcing the incoming neutral kaon to react.
Because the strong interaction is strangeness conserving one knows from the reaction products if it is an antikaon or
not. Note that different to photons a NO event does not mean that the incoming kaon is a K0 but also includes that
it could have decayed before. In principle the strangeness content can also be obtained via decay modes, but Alice
and Bob have no way to force their kaon to decay at a certain time, the decay mechanism is a spontaneous event.
However, a necessary condition to refute local realistic theories are active measurements, i.e. exerting the free will of
the experimenter (for more details consult [27]).
In Refs. [27, 43] the authors studied the problem for an initial maximally entangled Bell state, i.e., ψ− ≃ K0K̄0 −

K̄0K0, and found that a value greater than 2 cannot be reached, i.e. one cannot refute any local realistic theory.
The reason is that the particle–antiparticle oscillation is too slow compared to the decay or vice versa, i.e., the ratio
of oscillation to decay x = ∆m

Γ
is about 1 for kaons and not 2 necessary for a violation. A different view is that the

decay property acts as a kind of “decoherence” as we introduced in Section II. From decoherence studies we know
that some states are more “robust” against a certain kind of decoherence than others, this leads to the question if
another maximally entangled Bell state or maybe a different initial state would lead to a violation which is indeed
the case.
In Ref. [29] it was shown that such states exists. This shifts the problem to finding methods to produce these initial

states leading to a violation of the generalized CHSH–Bell inequality. This is still an open problem. In Ref. [29]
also the interplay between entanglement and entropy was studied and as also shown by the authors of Ref. [30], who
studied the dynamics of two qubits interacting with a common zero-temperature non-Markovian reservoi, the picture
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that entanglement loss due to environmental decoherence is accompanied by loss of the purity of the state of the
system does not apply to these systems.
Given our effective operator formalism we can answer the question how much nonlocality is there for the given Bell

setting if we vary the times. In Fig. 4 we plotted the eigenvalues of the Bell operator for different choices corresponding
to the maximal/minmal value of the Bell inequality as well as the uncertainty. We find only a small amount of violation
(about 2.1) but huge time regions of possible violations. Moreover, we notice an asymmetric behaviour of the minimal
and maximal eigenvalues of the Bell operator which is due to the two different decay constants, as also plotted in
Fig. 5 for a slow decaying system and for the B–meson system.
In Ref. [47] the authors showed that the maximal violation of the CHSH–Bell inequality is reached when the two

operators in the sum of the Bell operator, Eq. (49), commute. This fact the authors used to construct other relevant
Bell inequalities for two–qubit systems. For unstable systems we do not see a one–to–one correspondence between

the uncertainty of the summands in the Bell operator and the amount of violation, moreover, Oeffm ± Oeffm′ does not
necessary describe an observable obtainable in a single measurement.

VII. SUMMARY AND CONCLUSIONS

We studied the phenomenology of decaying two–state systems and discussed quantum features from an information
theoretic view. For that we developed an effective formalism which allows to handle unstable two-state systems
with the usual well developed formalism in Quantum Information Theory. We applied it to the neutral kaon system
including the CP violation, the observed imbalance between matter and antimatter in our universe.
We presented the effective operator in decomposition of the Pauli-matrices and the unity, which shows the com-

plicated change of the Bloch vector in time. The spectral decomposition shows that only one eigenvalue depends on
measurement settings and that the corresponding eigenvectors can be interpreted as quasispins evolving in (forward
and backward) time normalized to surviving pairs. The second eigenvalue is always −1, i.e. it does not depend on
the chosen measurement settings. This expresses the fact that we are only interested in quantum features intrinsic to
neutral kaons and not about the properties of the different decay channels.
The lower bound on the binary entropies of two chosen observables is given by maximal overlap of the eigenvectors

of both observables and encodes the limitations on the available information obtainable by the chosen observables.
To obtain this Heisenberg uncertainty in time for meson-antimeson systems we compared measurement settings at
time t = 0 to the same measurement settings at a later time t. We find for flavor measurements that the uncertainty
becomes maximal for times which are odd multiples of π

2
, while for times which are multiples of π only in the case both

decay rates are equal the uncertainty becomes zero again as it is the case for non–decaying systems. For considerably
different decay constants as in the neutral kaon system the uncertainty never vanishes for any later time measurement,
i.e. introducing an persisting lack of information; this is depicted in Fig. 1.
Due to imbalance of matter and antimatter we derived a maximal uncertainty for short lived measurements at a

“complementary” time depending on the precise values of the CP violating parameter δ. This “complementary” time
is more than twice the time of the time duration for which the probability to misidentify a long lived state as a short
lived state or vice versa is equal. In case of long lived measurements the lower bound on the uncertainty relation
is constant (about the amount of the CP violating parameter). This is illustrated in Fig. 2 and shows the effect of
indirect CP violation on the states persisting their nature in the time evolution.
Then we proceed to entangled bipartite systems. The effective observables simply generalize for multipartite systems

by the usual tensor product structure which is a clear advantage to the open quantum approach. The uncertainty
for bipartite systems is straightforwardly obtained as it is the maximum of the product of the scalar products of the
eigenvectors of the single effective operator.
Due to the developed effective formalism Bell inequalities, i.e. inequalities deciding whether a local realistic view

for kaons is valid, can be formulated in a mathematically more simple form, i.e. as a witness operator. Herewith, we
do not need to optimize over the state space parameters and the four different measurement settings, but can simply
compute the eigenvalues of the Bell operator to obtain the maximal possible value given by the quantum theory. In
case of strangeness measurements we find that the violation is not big, but can be obtained for long time regions.
Indeed, also for times when the short lived component has already died out for all practical purposes, i.e. no oscillation
can be seen, but since the probability is still nonzero, non-negligible contributions in the Bell operator exist.
We believe with this information theoretic view on unstable two–state systems and, in particular, on the meson-

antimeson systems in high energy physics we could enlighten the quantum features in these massive systems and, in
particular, the threefold role of time, being responsible for strangeness oscillations, oscillation due to CP violation
and characterizing the decay property.
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FIG. 4: (Color online) The maximal violations of the Bell inequality, i.e. the maximal and minimal eigenvalues of the operator
(49) for strangeness questions for time choices (a) {tn = tm = tn′ = tm′ = t}, (b) {tn = 0, tm = t, tn′ = t, tm′ = 0} and (c)
{tn = t, tm = 0, tn′ = 0, tm′ = t} are plotted (red big dots). Green dots (smaller dots) represent a lower bound on the entropic
uncertainty relation (37) between the two summands of the Bell operator which is zero for t = 0 and then immediately jumps
to a certain value and is equal for the time settings (b) and (c). The dashed blue lines are the upper bounds on the CHSH-Bell
inequality, i.e. ±2

√
2, and the solid blue line represent the bound ±2 given by local realistic theories. One notices that even

for long times a violation can be found, though the short lived component can no longer directly be measured.
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