164 research outputs found
Bisphenol A exposure and cardiac electrical conduction in excised rat hearts
BACKGROUND:
Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased BPA urinary concentrations and cardiovascular disease; yet the direct effects of BPA on the heart are unknown. OBJECTIVES:
The goal of our studies was to measure BPA\u27s effect (0.1-100 μM) on cardiac impulse propagation ex vivo, using excised whole hearts from adult rats. METHODS:
We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. RESULTS:
Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1 - 100 μM), prolonged action potential duration (1 - 100 μM) and delayed atrioventricular conduction (10 - 100 μM). Importantly, these effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals, dropped ventricular beats and eventually resulted in complete heart block. CONCLUSIONS:
Our results show that acute BPA exposure slows electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA\u27s effect on heart electrophysiology and determining whether chronic in vivo exposure can cause/exacerbate conduction abnormalities in patients with pre-existing heart conditions and other high-risk populations
Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone
Abnormal electrical activity from the boundaries of ischemic cardiac tissue
is recognized as one of the major causes in generation of ischemia-reperfusion
arrhythmias. Here we present theoretical analysis of the waves of electrical
activity that can rise on the boundary of cardiac cell network upon its
recovery from ischaemia-like conditions. The main factors included in our
analysis are macroscopic gradients of the cell-to-cell coupling and cell
excitability and microscopic heterogeneity of individual cells. The interplay
between these factors allows one to explain how spirals form, drift together
with the moving boundary, get transiently pinned to local inhomogeneities, and
finally penetrate into the bulk of the well-coupled tissue where they reach
macroscopic scale. The asymptotic theory of the drift of spiral and scroll
waves based on response functions provides explanation of the drifts involved
in this mechanism, with the exception of effects due to the discreteness of
cardiac tissue. In particular, this asymptotic theory allows an extrapolation
of 2D events into 3D, which has shown that cells within the border zone can
give rise to 3D analogues of spirals, the scroll waves. When and if such scroll
waves escape into a better coupled tissue, they are likely to collapse due to
the positive filament tension. However, our simulations have shown that such
collapse of newly generated scrolls is not inevitable and that under certain
conditions filament tension becomes negative, leading to scroll filaments to
expand and multiply leading to a fibrillation-like state within small areas of
cardiac tissue.Comment: 26 pages, 13 figures, appendix and 2 movies, as accepted to PLoS ONE
2011/08/0
Arterial elasticity imaging: comparison of finite-element analysis models with high-resolution ultrasound speckle tracking
<p>Abstract</p> <p>Background</p> <p>The nonlinear mechanical properties of internal organs and tissues may be measured with unparalleled precision using ultrasound imaging with phase-sensitive speckle tracking. The many potential applications of this important noninvasive diagnostic approach include measurement of arterial stiffness, which is associated with numerous major disease processes. The accuracy of previous ultrasound measurements of arterial stiffness and vascular elasticity has been limited by the relatively low strain of nonlinear structures under normal physiologic pressure and the measurement assumption that the effect of the surrounding tissue modulus might be ignored in both physiologic and pressure equalized conditions.</p> <p>Methods</p> <p>This study performed high-resolution ultrasound imaging of the brachial artery in a healthy adult subject under normal physiologic pressure and the use of external pressure (pressure equalization) to increase strain. These ultrasound results were compared to measurements of arterial strain as determined by finite-element analysis models with and without a surrounding tissue, which was represented by homogenous material with fixed elastic modulus.</p> <p>Results</p> <p>Use of the pressure equalization technique during imaging resulted in average strain values of 26% and 18% at the top and sides, respectively, compared to 5% and 2%, at the top and sides, respectively, under physiologic pressure. In the artery model that included surrounding tissue, strain was 19% and 16% under pressure equalization versus 9% and 13% at the top and sides, respectively, under physiologic pressure. The model without surrounding tissue had slightly higher levels of strain under physiologic pressure compared to the other model, but the resulting strain values under pressure equalization were > 60% and did not correspond to experimental values.</p> <p>Conclusions</p> <p>Since pressure equalization may increase the dynamic range of strain imaging, the effect of the surrounding tissue on strain should be incorporated into models of arterial strain, particularly when the pressure equalization technique is used.</p
Reproducibility of shear wave elastography measuresof the Achilles tendon.
OBJECTIVE
To assess the reproducibility of shear wave elastography (SWE) measures in the Achilles tendon (AT) in vivo.
MATERIALS AND METHODS
Shear wave velocity (SWV) of 14 healthy volunteers [7 males, 7 females; mean age 26.5 ± 3.8 years, mean height 171.6 ± 10.9 cm, mean Victorian Institute of Sports Assessment Achilles questionnaire (VISA-A) score 99.4 ± 1.2] was measured with the foot relaxed and fixed at 90°. Data were collected over five consecutive measures and 5 consecutive days.
RESULTS
Mean SWV values ranged from 7.91 m/s-9.56 m/s ± 0.27-0.50 m/s. Coefficient of variation (CV), correlations and intra-class correlation coefficient (ICC) scores ranged from 2.9%-6.3%, 0.4-0.7 and 0.54-0.85 respectively. No significant differences were noted for longitudinal or transverse data with respect to protocol or time and no significant differences were noted for foot position in transverse data. Significant differences in SWV values were noted between foot positions for longitudinal scanning (p = <0.05), with a relaxed foot position providing SWV values on average 0.47 m/s faster than a fixed position. Increased reproducibility was obtained with the foot relaxed. ICC between operators was 0.70 for transverse and 0.80 for longitudinal scanning.
CONCLUSIONS
Reproducible SWE measures were obtained over a 1-h period as well as a period of 5 consecutive days with more reliable measures obtained from a longitudinal plane using a relaxed foot position. SWE also has a high level of agreement between operators making SWE a reproducible technique for quantitatively assessing the mechanical properties of the human AT in vivo
Poor reproducibility of compression elastography in the Achilles tendon: same day and consecutive day measurements.
OBJECTIVE
To determine the reproducibility of compression elastography (CE) when measuring strain data, a measure of stiffness of the human Achilles tendon in vivo, over consecutive measures, consecutive days and when using different foot positions.
MATERIALS AND METHODS
Eight participants (4 males, 4 females; mean age 25.5 ± 2.51 years, range 21-30 years; height 173.6 ± 11.7 cm, range 156-189 cm) had five consecutive CE measurements taken on one day and a further five CE measures taken, one per day, at the same time of day, every day for a consecutive 5-day period. These 80 measurements were used to assess both the repeatability and reproducibility of the technique. Means, standard deviations, coefficient of variation (CV), Pearson correlation analysis (R) and intra-class correlation coefficients (ICC) were calculated.
RESULTS
For CE data, all CVs were above 53%, R values indicated no-to-weak correlations between measures at best (range 0.01-0.25), and ICC values were all classified in the poor category (range 0.00-0.11). CVs for length and diameter measures were acceptably low indicating a high level of reliability.
CONCLUSIONS
Given the wide variation obtained in the CE results, it was concluded that CE using this specific system has a low level of reproducibility for measuring the stiffness of the human Achilles tendon in vivo over consecutive days, consecutive measures and in different foot positions
- …