11 research outputs found

    Dust survival rates in clumps passing through the Cas A reverse shock -- II. The impact of magnetic fields

    Get PDF
    Dust grains form in the clumpy ejecta of core-collapse supernovae where they are subject to the reverse shock, which is able to disrupt the clumps and destroy the grains. Important dust destruction processes include thermal and kinetic sputtering as well as fragmentation and grain vaporization. In the present study, we focus on the effect of magnetic fields on the destruction processes. We have performed magneto-hydrodynamical simulations using AstroBEAR to model a shock wave interacting with an ejecta clump. The dust transport and destruction fractions are computed using our post-processing code Paperboats in which the acceleration of grains due to the magnetic field and a procedure that allows partial grain vaporization have been newly implemented. For the oxygen-rich supernova remnant Cassiopeia A we found a significantly lower dust survival rate when magnetic fields are aligned perpendicular to the shock direction compared to the non-magnetic case. For a parallel field alignment, the destruction is also enhanced but at a lower level. The survival fractions depend sensitively on the gas density contrast between the clump and the ambient medium and on the grain sizes. For a low-density contrast of 100100, e.g., 5 5\,nm silicate grains are completely destroyed while the survival fraction of 1 μ1\,\mum grains is 86 86\,per cent. For a high-density contrast of 10001000, 95 95\,per cent of the 5 5\,nm grains survive while the survival fraction of 1 μ1\,\mum grains is 26 26\,per cent. Alternative clump sizes or dust materials (carbon) have non-negligible effects on the survival rate but have a lower impact compared to density contrast, magnetic field strength, and grain size.Comment: Accepted by MNRAS. Author accepted manuscript. Accepted on 23/01/2023. 24 pages, 21 Figure

    Population III X-ray Binaries and their Impact on the Early Universe

    Full text link
    The first population of X-ray binaries (XRBs) is expected to affect the thermal and ionization states of the gas in the early Universe. Although these X-ray sources are predicted to have important implications for high-redshift observable signals, such as the hydrogen 21-cm signal from cosmic dawn and the cosmic X-ray background, their properties are poorly explored, leaving theoretical models largely uninformed. In this paper we model a population of X-ray binaries arising from zero metallicity stars. We explore how their properties depend on the adopted initial mass function (IMF) of primordial stars, finding a strong effect on their number and X-ray production efficiency. We also present scaling relations between XRBs and their X-ray emission with the local star formation rate, which can be used in sub-grid models in numerical simulations to improve the X-ray feedback prescriptions. Specifically, we find that the uniformity and strength of the X-ray feedback in the intergalactic medium is strongly dependant on the IMF. Bottom-heavy IMFs result in a smoother distribution of XRBs, but have a luminosity orders of magnitude lower than more top-heavy IMFs. Top-heavy IMFs lead to more spatially uneven, albeit strong, X-ray emission. An intermediate IMF has a strong X-ray feedback while sustaining an even emission across the intergalactic medium. These differences in X-ray feedback could be probed in the future with measurements of the cosmic dawn 21-cm line of neutral hydrogen, which offers us a new way of constraining population III IMF.Comment: Accepted for publication in MNRAS, 17 pages, 9 figure

    From total destruction to complete survival: dust processing at different evolutionary stages in the supernova remnant Cassiopeia A

    Get PDF
    The expanding ejecta of supernova remnants (SNRs) are believed to form dust in dense clumps of gas. Before the dust can be expelled into the interstellar medium and contribute to the interstellar dust budget, it has to survive the reverse shock that is generated through the interaction of the preceding supernova blast wave with the surrounding medium. The conditions under which the reverse shock hits the clumps change with remnant age and define the dust survival rate. To study the dust destruction in the SNR Cassiopeia A, we conduct magnetohydrodynamical simulations of the evolution of a supernova blast wave and of the reverse shock. In a second step, we use these evolving conditions to model clumps that are disrupted by the reverse shock at different remnant ages. Finally, we compute the amount of dust that is destroyed by the impact of the reverse shock. We find that most of the dust in the SNR is hit by the reverse shock within the first 350 yr after the SN explosion. While the dust destruction in the first 200 yr is almost complete, we expect greater dust survival rates at later times and almost total survival for clumps that are first impacted at ages beyond 1000 yr. Integrated over the entire evolution of the SNR, the dust mass shows the lowest survival fraction (17 per cent) for the smallest grains (1 nm) and the highest survival fraction (28 per cent) for the largest grains (1000 nm)

    A JWST survey of the supernova remnant Cassiopeia A

    Get PDF
    We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3 μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects

    Photoionization feedback in turbulent molecular clouds

    Get PDF
    NS acknowledges funding from the Royal Society University Research Fellowship of Anastasia Fialkov and the CAPES funding agency for financial support during her PhD. BV acknowledges funding from the Belgian Science Policy Office (BELSPO) through the PRODEX project ‘SPICA-SKIRT: A far-infrared photometry and polarimetry simulation toolbox in preparation of the SPICA mission’ (C4000128500). KW and BV acknowledge support by STFC grant no. ST/M001296/1. The equipment was funded by BEIS capital funding via STFC capital grants ST/K000373/1 and ST/R002363/1 and STFC DiRAC Operations grant ST/R001014/1. DiRAC is part of the National e-Infrastructure.We present a study of the impact of photoionization feedback from young massive stars on the turbulent statistics of star-forming molecular clouds. This feedback is expected to alter the density structure of molecular clouds and affect future star formation. Using the AMUN-Rad code, we first generate a converged isothermal forced turbulent density structure inside a periodic box. We then insert an ionizing source in this box and inject photoionization energy using a two-temperature pseudo-isothermal equation of state. We study the impact of sources at different locations in the box and of different source luminosities. We find that photoionization has a minor impact on the 2D and 3D statistics of turbulence when turbulence continues to be driven in the presence of a photoionizing source. Photoionization is only able to disrupt the cloud if the turbulence is allowed to decay. In the former scenario, the presence of an H ii region inside our model cloud does not lead to a significant impact on observable quantities, independent of the source parameters.Publisher PDFPeer reviewe

    Photoionization feedback in turbulent molecular clouds

    No full text
    We present a study of the impact of photoionization feedback from young massive stars on the turbulent statistics of star-forming molecular clouds. This feedback is expected to alter the density structure of molecular clouds and affect future star formation. Using the AMUN-Rad code, we first generate a converged isothermal forced turbulent density structure inside a periodic box. We then insert an ionizing source in this box and inject photoionization energy using a two-temperature pseudo-isothermal equation of state. We study the impact of sources at different locations in the box and of different source luminosities. We find that photoionization has a minor impact on the 2D and 3D statistics of turbulence when turbulence continues to be driven in the presence of a photoionizing source. Photoionization is only able to disrupt the cloud if the turbulence is allowed to decay. In the former scenario, the presence of an H ii region inside our model cloud does not lead to a significant impact on observable quantities, independent of the source parameters. </p

    What it Takes to Measure Reionization with Fast Radio Bursts

    No full text
    Fast Radio Bursts (FRBs) are extra-galactic radio transients which exhibit a distance-dependent dispersion of their signal, and thus can be used as cosmological probes. In this article we, for the first time, apply a model-independent approach to measure reionization from synthetic FRB data assuming these signals are detected beyond redshift 5. This method allows us to constrain the full shape of the reionization history as well as the CMB optical depth Ï„\tau while avoiding the problems of commonly used model-based techniques. 100 localized FRBs, originating from redshifts 5-15, could constrain (at 68% confidence level) the CMB optical depth to within 11%, and the midpoint of reionization to 4%, surpassing current state-of-the-art CMB bounds and quasar limits. Owing to the higher numbers of expected FRBs at lower redshifts, the Ï„\tau constraints are asymmetric (+14%, -7%) providing a much stronger lower limit. Finally, we show that the independent constraints on reionization from FRBs will improve limits on other cosmological parameters such as the amplitude of the power spectrum of primordial fluctuations

    Testing the stability of supersonic ionized Bondi accretion flows with radiation hydrodynamics

    No full text
    We investigate the general stability of 1D spherically symmetric ionized Bondi accretion on to a massive object in the specific context of accretion on to a young stellar object. We first derive a new analytic expression for a steady-state two-temperature solution that predicts the existence of compact and hypercompact H ii regions. We then show that this solution is only marginally stable if ionization is treated self-consistently. This leads to a recurring collapse of the H ii region over time. We derive a semi-analytic model to explain this instability, and test it using spatially converged 1D radiation hydrodynamical simulations. We discuss the implications of the 1D instability on 3D radiation hydrodynamics simulations of supersonic accreting flows
    corecore