683 research outputs found

    Biogeography and ecological diversification of a mayfly clade in New Guinea

    Get PDF
    Understanding processes that have driven the extraordinary high level of biodiversity in the tropics is a long-standing question in biology. Here we try to assess whether the large lineage richness found in a New Guinean clade of mayflies (Ephemeroptera), namely the Thraulus group (Leptophlebiidae) could be associated with the recent orogenic processes, by applying a combination of phylogenetic, biogeographic and ecological shift analyses. New Guinean representatives of the Thraulus group appear monophyletic, with the possible exception of a weakly-supported early-diverging clade from the Sunda Islands. Dating analyses suggest an Eocene origin of the Thraulus group, predating by several million years current knowledge on the origin of other New Guinean aquatic organisms. Biogeographic inferences indicate that 27 of the 28 inferred dispersals (96.4%) occurred during the Eocene, Oligocene and Miocene, while only one dispersal (3.6%) took place during the Pliocene-Pleistocene. This result contrasts with the higher number of altitudinal shifts (15 of 22; 68.2%) inferred during the Pliocene-Pleistocene time slice. Our study illustrates the role played by – potentially ecological - diversification along the elevation gradient in a time period concomitant with the establishment of high-altitude ecological niches, i.e., during orogenesis of the central New Guinean mountain range. This process might have taken over the previous main mode of diversification at work, characterized by dispersal and vicariance, by driving lineage divergence of New Guinean Leptophlebiidae across a wide array of habitats along the elevation gradient. Additional studies on organisms spanning the same elevation range as Thraulus mayflies in the tropics are needed to evaluate the potential role of the ecological opportunity or taxon cycles hypotheses in partly explaining the latitudinal diversity gradient

    Impact modelling and a posteriori non-destructive evaluation of homogeneous particleboards of sugarcane bagasse

    Get PDF
    With a view to gaining an in-depth assessment of the response of particleboards (PBs) to different in-service loading conditions, samples of high-density homogeneous PBs of sugarcane bagasse and castor oil polyurethane resin were manufactured and subjected to low velocity impacts using an instrumented drop weight impact tower and four different energy levels, namely 5, 10, 20 and 30 J. The prediction of the damage modes was assessed using Comsol Multiphysics ® . ®. In particular, the random distribution of the fibres and their lengths were reproduced through a robust model. The experimentally obtained dent depths due to the impactor were compared with the ones numerically simulated showing good agreement. The post-impact damage was evaluated by a simultaneous system of image acquisitions coming from two different sensors. In particular, thermograms were recorded during the heating up and cooling down phases, while the specklegrams were gathered one at room temperature (as reference) and the remaining during the cooling down phase. On one hand, the specklegrams were processed via a new software package named Ncorr v.1.2, which is an open-source subset-based 2D digital image correlation (DIC) package that combines modern DIC algorithms proposed in the literature with additional enhancements. On the other hand, the thermographic results linked to a square pulse were compared with those coming from the laser line thermography technique that heats a line-region on the surface of the sample instead of a spot. Surprisingly, both the vibrothermography and the line scanning thermography methods coupled with a robotized system show substantial advantages in the defect detection around the impacted zone

    Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B cell lymphoma

    Get PDF
    Enhancers are regulatory regions of DNA, which play a key role in cell-type specific differentiation and development. Most active enhancers are transcribed into enhancer RNAs (eRNAs) that can regulate transcription of target genes by means of in cis as well as in trans action. eRNAs stabilize contacts between distal genomic regions and mediate the interaction of DNA with master transcription factors. Here, we characterised an enhancer RNA, GECPAR (GErminal Center Proliferative Adapter RNA), that is specifically transcribed in normal and neoplastic germinal center B-cells from the super-enhancer of POU2AF1, a key regulatory gene of the germinal center reaction. Using diffuse large B cell lymphoma cell line models, we demonstrated the tumor suppressor activity of GECPAR, which is mediated via its transcriptional regulation of proliferation and differentiation genes, particularly MYC and the Wnt pathway

    Stimulation of the cuneiform nucleus enables training and boosts recovery after spinal cord injury

    Full text link
    Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability

    Detection and Monitoring of Tumor-Derived Mutations in Circulating Tumor DNA Using the UltraSEEK Lung Panel on the MassARRAY System in Metastatic Non-Small Cell Lung Cancer Patients

    Get PDF
    Analysis of circulating tumor DNA (ctDNA) is a potential minimally invasive molecular tool to guide treatment decision-making and disease monitoring. A suitable diagnostic-grade platform is required for the detection of tumor-specific mutations with high sensitivity in the circulating cell-free DNA (ccfDNA) of cancer patients. In this multicenter study, the ccfDNA of 72 patients treated for advanced-stage non-small cell lung cancer (NSCLC) was evaluated using the UltraSEEK ® Lung Panel on the MassARRAY ® System, covering 73 hotspot mutations in EGFR, KRAS, BRAF, ERBB2, and PIK3CA against mutation-specific droplet digital PCR (ddPCR) and routine tumor tissue NGS. Variant detection accuracy at primary diagnosis and during disease progression, and ctDNA dynamics as a marker of treatment efficacy, were analyzed. A multicenter evaluation using reference material demonstrated an overall detection rate of over 90% for variant allele frequencies (VAFs) &gt; 0.5%, irrespective of ccfDNA input. A comparison of UltraSEEK ® and ddPCR analyses revealed a 90% concordance. An 80% concordance between therapeutically targetable mutations detected in tumor tissue NGS and ccfDNA UltraSEEK ® analysis at baseline was observed. Nine of 84 (11%) tumor tissue mutations were not covered by UltraSEEK ®. A decrease in ctDNA levels at 4-6 weeks after treatment initiation detected with UltraSEEK ® correlated with prolonged median PFS (46 vs. 6 weeks; p &lt; 0.05) and OS (145 vs. 30 weeks; p &lt; 0.01). Using plasma-derived ccfDNA, the UltraSEEK ® Lung Panel with a mid-density set of the most common predictive markers for NSCLC is an alternative tool to detect mutations both at diagnosis and during disease progression and to monitor treatment response. </p

    Prevalence, predictors, and outcomes of patient prosthesis mismatch in women undergoing TAVI for severe aortic stenosis: Insights from the WIN-TAVI registry

    Get PDF
    Objective: To evaluate the incidence, predictors and outcomes of female patients with patient-prosthesis mismatch (PPM) following transcatheter aortic valve intervention (TAVI) for severe aortic stenosis (AS). Background: Female AS TAVI recipients have a significantly lower mortality than surgical aortic valve replacement (SAVR) recipients, which could be attributed to the potentially lower PPM rates. TAVI has been associated with lower rates of PPM compared to SAVR. PPM in females post TAVI has not been investigated to date. Methods: The WIN-TAVI (Women's INternational Transcatheter Aortic Valve Implantation) registry i
    corecore