58 research outputs found

    Fuzzy Least Squares Twin Support Vector Machines

    Full text link
    Least Squares Twin Support Vector Machine (LST-SVM) has been shown to be an efficient and fast algorithm for binary classification. It combines the operating principles of Least Squares SVM (LS-SVM) and Twin SVM (T-SVM); it constructs two non-parallel hyperplanes (as in T-SVM) by solving two systems of linear equations (as in LS-SVM). Despite its efficiency, LST-SVM is still unable to cope with two features of real-world problems. First, in many real-world applications, labels of samples are not deterministic; they come naturally with their associated membership degrees. Second, samples in real-world applications may not be equally important and their importance degrees affect the classification. In this paper, we propose Fuzzy LST-SVM (FLST-SVM) to deal with these two characteristics of real-world data. Two models are introduced for FLST-SVM: the first model builds up crisp hyperplanes using training samples and their corresponding membership degrees. The second model, on the other hand, constructs fuzzy hyperplanes using training samples and their membership degrees. Numerical evaluation of the proposed method with synthetic and real datasets demonstrate significant improvement in the classification accuracy of FLST-SVM when compared to well-known existing versions of SVM

    Game Theory of Tumor–Stroma Interactions in Multiple Myeloma: Effect of Nonlinear Benefits

    Get PDF
    Cancer cells and stromal cells often exchange growth factors with paracrine effects that promote cell growth: a form of cooperation that can be studied by evolutionary game theory. Previous models have assumed that interactions between cells are pairwise or that the benefit of a growth factor is a linear function of its concentration. Diffusible factors, however, affect multiple cells and generally have nonlinear effects, and these differences are known to have important consequences for evolutionary dynamics. Here, we study tumor–stroma paracrine signaling using a model with multiplayer collective interactions in which growth factors have nonlinear effects. We use multiple myeloma as an example, modelling interactions between malignant plasma cells, osteoblasts, and osteoclasts. Nonlinear benefits can lead to results not observed in linear models, including internal mixed stable equilibria and cyclical dynamics. Models with linear effects, therefore, do not lead to a meaningful characterization of the dynamics of tumor–stroma interactions. To understand the dynamics and the effect of therapies it is necessary to estimate the shape of the benefit functions experimentally and parametrize models based on these functions

    Cooperation among cancer cells: applying game theory to cancer

    Get PDF
    Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation

    Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification

    Get PDF
    Least squares twin support vector machine (LSTSVM) is a relatively new version of support vector machine (SVM) based on non-parallel twin hyperplanes. Although, LSTSVM is an extremely efficient and fast algorithm for binary classification, its parameters depend on the nature of the problem. Problem dependent parameters make the process of tuning the algorithm with best values for parameters very difficult, which affects the accuracy of the algorithm. Simulated annealing (SA) is a random search technique proposed to find the global minimum of a cost function. It works by emulating the process where a metal slowly cooled so that its structure finally “freezes”. This freezing point happens at a minimum energy configuration. The goal of this paper is to improve the accuracy of the LSTSVMalgorithmby hybridizing it with simulated anneaing. Our research to date suggests that this improvement on the LSTSVM is made for the first time in this paper. Experimental results on several benchmark datasets demonstrate that the accuracy of the proposed algorithm is very promising when compared to other classification methods in the literature. In addition, computational time analysis of the algorithm showed the practicality of the proposed algorithm where the computational time of the algorithm falls between LSTSVM and SVM

    Evolutionary dynamics of tumor-stroma interactions in multiple myeloma

    Get PDF
    Cancer cells and stromal cells cooperate by exchanging diffusible factors that sustain tumor growth, a form of frequency-dependent selection that can be studied in the framework of evolutionary game theory. In the case of multiple myeloma, three types of cells (malignant plasma cells, osteoblasts and osteoclasts) exchange growth factors with different effects, and tumor-stroma interactions have been analysed using a model of cooperation with pairwise interactions. Here we show that a model in which growth factors have autocrine and paracrine effects on multiple cells, a more realistic assumption for tumor-stroma interactions, leads to different results, with implications for disease progression and treatment. In particular, the model reveals that reducing the number of malignant plasma cells below a critical threshold can lead to their extinction and thus to restore a healthy balance between osteoclast and osteoblast, a result in line with current therapies against multiple myeloma

    Game Theory of Tumor–Stroma Interactions in Multiple Myeloma: Effect of Nonlinear Benefits

    No full text
    Cancer cells and stromal cells often exchange growth factors with paracrine effects that promote cell growth: a form of cooperation that can be studied by evolutionary game theory. Previous models have assumed that interactions between cells are pairwise or that the benefit of a growth factor is a linear function of its concentration. Diffusible factors, however, affect multiple cells and generally have nonlinear effects, and these differences are known to have important consequences for evolutionary dynamics. Here, we study tumor–stroma paracrine signaling using a model with multiplayer collective interactions in which growth factors have nonlinear effects. We use multiple myeloma as an example, modelling interactions between malignant plasma cells, osteoblasts, and osteoclasts. Nonlinear benefits can lead to results not observed in linear models, including internal mixed stable equilibria and cyclical dynamics. Models with linear effects, therefore, do not lead to a meaningful characterization of the dynamics of tumor–stroma interactions. To understand the dynamics and the effect of therapies it is necessary to estimate the shape of the benefit functions experimentally and parametrize models based on these functions

    Analyse comparée des données d'enregistreurs holter au cours du saut chez des chuteurs opérationnels militaires et des passagers tandems (étude PARAFT)

    No full text
    AIX-MARSEILLE2-BU Méd/Odontol. (130552103) / SudocPARIS-Bib. Serv.Santé Armées (751055204) / SudocSudocFranceF

    Ecological Dynamics and Evolution of Cooperation in Vehicular Ad Hoc Networks

    No full text
    In Vehicular Ad Hoc Networks (VANETs), promoting cooperative behavior is a challenging problem for mechanism designers. Cooperative actions, such as disseminating data, can seem at odds with rationality and may benefit other vehicles at a cost to oneself. Without additional mechanisms, it is expected that cooperative behavior in the population will decrease and eventually disappear. Classical game theoretical models for cooperation, such as the public goods game, predict this outcome, but they assume fixed population sizes and overlook the ecological dynamics of the interacting vehicles. In this paper, we propose an evolutionary public goods game that incorporates VANET ecological dynamics and offers new insights for promoting cooperation. Our model considers free spaces, population density, departure rates of vehicles, and randomly composed groups for each data sender. Theoretical analysis and simulation results show that higher population densities and departure rates, due to minimum differences between pay-offs of vehicles, promote cooperative behavior. This feedback between ecological dynamics and evolutionary game dynamics leads to interesting results. Our proposed model demonstrates a new extension of evolutionary dynamics to vehicles of varying densities. We show that it is possible to promote cooperation in VANETs without the need for any supporting mechanisms. Future research can investigate the potential for using this model in practical settings
    corecore