316 research outputs found

    Damage dynamics: A variational approach

    Get PDF
    In this paper we construct, by means of a variational formulation, the solutions of a problem of elastodynamics which includes the effect of damage for the elastic material. The result is a wave equation with time dependent operators which represents the elastic coefficients of the material undergoing damage. The dynamics that we construct also satisfies a threshold condition with the same threshold value that characterizes the quasi-static evolution of damage (see [12])

    Draft Whole-Genome Sequence of Trichoderma gamsii T6085, a Promising Biocontrol Agent of Fusarium Head Blight on Wheat

    Get PDF
    Trichoderma gamsii T6085 is a promising beneficial isolate whose effects consist of growth inhibition of the main agents causing Fusarium head blight, reduction of mycotoxin accumulation, competition for wheat debris, and reduction of the disease in both the lab and the field. Here, we present the first genome assembly of a T. gamsii isolate, providing a useful platform for the scientific community

    Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions

    Get PDF
    KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium

    Pathogenic potential of Beauveria pseudobassiana as bioinsecticide in protein baits for the control of the medfly Ceratitis capitata

    Get PDF
    The medfly, Ceratitis capitata (Wiedemann) (Diptera Tephritidae), is a major insect pest affecting fruit production worldwide whose control is mainly based on the use of protein baits laced with chemical insecticides. Entomopathogenic fungi are well- known to be effective against a wide spectrum of insect pests and are commonly utilized in integrated pest management and bio- logical control programs. Here, we assess the feasibility of using the recently described entomopathogenic species Beauveria pseudobassiana Rehner et Humber (Hypocreales Cordycipitaceae) as a biological insecticide in protein bait sprays for the control of the medfly. Firstly, we evaluated the pathogenicity of B. pseudobassiana against eggs, larvae, pupae and adults of the medfly. Secondly, we tested its efficacy as bioinsecticide in protein bait sprays. The results of the pathogenicity tests showed that B. pseu- dobassiana is able to infect, and lead to the death, all instar of the medfly. The efficacy of B. pseudobassiana was confirmed also when used as bioinsecticide in protein baits. In planta tests, the survival probability (Kaplan-Meier estimates) of flies in contact with the B. pseudobassiana-laced protein bait was significantly lower respect to control. Median survival time of flies treated with B. pseudobassiana-laced protein (6 ± 1.422 d) was at least three times shorter than in control (> 20 d). Based on our results, we confirmed the potential of B. pseudobassiana as bioinsecticide in entomopathogenic fungi-laced protein baits for the control of tephritid fruit flies

    A statistical protocol to describe differences among nutrient utilization patterns of Fusarium spp. and Trichoderma gamsii

    Get PDF
    The Biolog® Phenotype MicroArrays™ (PM) system offers a simple and cheap tool to rapidly providing a high throughput of information about the phenotypes of fungal isolates in a short lapse of time. In order to improve the use of the PM system in fungal ecology studies, in the present work we propose a new statistical protocol based on two approaches, i.e. a functional PCA to describe similarity patterns of growth curves and a Bayesian GAMs to allow inferences on specific growth features, in order to analyse nutrient fungal utilization in a model system including four causal agents of FHB, the natural competitor Fusarium oxysporum and the beneficial isolate Trichoderma gamsii T6085. Analysis of data collected by the Biolog® Phenotype MicroArrays™ (PM) in our biological system showed a different nutritional competitive potential of the four pathogens, as well as an intermediate behaviour of the natural competitor and of our biocontrol agent. This protocol, applicable to different fungal phenotypical studies both at isolate and community level, allows a full exploitation of data obtained by PM system and provides important information about the nutritional pattern of a single isolate compared to those of other fungi, a key information to be exploited in biocontrol strategies

    Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis

    Get PDF
    With the idea of summarizing the outcomes of studies focusing on the resistance induced by Trichoderma spp. against Botrytis cinerea in tomato, the present paper shows, for the first time, results of a meta-analysis performed on studies published from 2010 to 2021 concerning the cross-talk occurring in the tomato–Trichoderma-B. cinerea system. Starting from an initial set of 40 papers, the analysis was performed on 15 works and included nine parameters, as a result of a stringent selection mainly based on the availability of more than one article including the same indicator. The resulting work not only emphasizes the beneficial effects of Trichoderma in the control of grey mold in tomato leaves (reduction in disease intensity, severity and incidence and modulation of resistance genes in the host), but carefully drives the readers to reply to two questions: (i) What are the overall effects of Trichoderma on B. cinerea infection in tomato? (ii) Do the main effects of Trichoderma differ based on the tomato species, Trichoderma species, amount, type and duration of treatment? At the same time, this meta-analysis highlights some weak points of the available literature and should be seen as an invitation to improve future works to better the conceptualization and measure
    • …
    corecore