461 research outputs found

    The 11.2 ÎĽ\mum emission of PAHs in astrophysical objects

    Get PDF
    The 11.2 ÎĽ\mum emission band belongs to the family of the `Unidentified' Infrared (UIR) emission bands seen in many astronomical environments. In this work we present a theoretical interpretation of the band characteristics and profile variation for a number of astrophysical sources in which the carriers are subject to a range of physical conditions. The results of Density Functional Theory (DFT) calculations for the solo out-of-plane (OOP) vibrational bending modes of large polycyclic aromatic hydrocarbon (PAH) molecules are used as input for a detailed emission model which includes the temperature and mass dependence of PAH band wavelength, and a PAH mass distribution that varies with object. Comparison of the model with astronomical spectra indicates that the 11.2 ÎĽ\mum band asymmetry and profile variation can be explained principally in terms of the mass distribution of neutral PAHs with a small contribution from anharmonic effects.Comment: 13 pages, 10 figures, 3 table. Accepted for publication in MNRA

    Polycyclic Aromatic Hydrocarbons with armchair edges and the 12.7 {\mu}m band

    Full text link
    In this Letter we report the results of density functional theory calculations on medium-sized neutral Polycyclic Aromatic Hydrocarbon (PAH) molecules with armchair edges. These PAH molecules possess strong C-H stretching and bending modes around 3 {\mu}m and in the fingerprint region (10-15 {\mu}m), and also strong ring deformation modes around 12.7 {\mu}m. Perusal of the entries in the NASA Ames PAHs Database shows that ring deformation modes of PAHs are common - although generally weak. We then propose that armchair PAHs with NC >65 are responsible for the 12.7 {\mu}m Aromatic Infrared Band in HII regions and discuss astrophysical implications in the context of the PAH life-cycle.Comment: Minor editin

    On the polarisation of the Red Rectangle optical emission bands

    Full text link
    The origin of the narrow optical emission bands seen toward the Red Rectangle is not yet understood. In this paper we investigate further the proposal that these are due to luminescence of large carbonaceous molecules. Polarised signals of several percent could be expected from certain asymmetric molecular rotators. The ESPaDOnS echelle spectrograph mounted at the CFHT was used to obtain high-resolution optical spectropolarimetric data of the Red Rectangle nebular emission. The RRBs at 5800, 5850, and 6615 Angstrom are detected in spectra of the nebular emission 7" and 13" North-East from the central star. The 5826 and 6635 Angstrom RRB are detected only at the position nearest to the central star. For both positions the Stokes Q and U spectra show no unambiguous polarisation signal in any of the RRBs. We derive an upper limit of 0.02% line polarisation for these RRBs. A tentative feature with peak polarisation of 0.05% is seen for the 5800 RRB at 7" offset. However, the Null spectra suggest that this may be an instrumental artifact. The lack of a clear polarisation signal for the five detected RRBs implies that, if the emission is due to luminescence of complex organics, these gas-phase molecular carriers are likely to have a high degree of symmetry, as they do not exhibit a Q-branch in their rotational profile, although this may be modified by statistical effects.Comment: 5 pages, 4 figures, accepted for A&

    Sequence structure emission in The Red Rectangle Bands

    Full text link
    We report high resolution (R~37,000) integral field spectroscopy of the central region (r<14arcsec) of the Red Rectangle nebula surrounding HD44179. The observations focus on the 5800A emission feature, the bluest of the yellow/red emission bands in the Red Rectangle. We propose that the emission feature, widely believed to be a molecular emission band, is not a molecular rotation contour, but a vibrational contour caused by overlapping sequence bands from a molecule with an extended chromophore. We model the feature as arising in a Polycyclic Aromatic Hydrocarbon (PAH) with 45-100 carbon atoms.Comment: 13 pages, 9 figures, accepted for publication in ApJ. A version of the paper with full resolution figures is available at: http://www.aao.gov.au/local/www/rgs/Sequence-Structure

    Linear/circular spectropolarimetry of diffuse interstellar bands

    Full text link
    Context. The identification of the carriers of diffuse interstellar bands (DIBs) remains one of the long-standing mysteries in astronomy. The detection of a polarisation signal in a DIB profile can be used to distinguish between a dust or gas-phase carrier. The polarisation profile can give additional information on the grain or molecular properties of the absorber. In order to detect and measure the linear and circular polarisation of the DIBs we observed reddened lines of sight showing continuum polarisation. For this study we selected two stars HD 197770 and HD 194279. We used high-resolution (R~64.000) spectropolarimetry in the wavelength range from 3700 to 10480 Angstrom with the ESPaDOnS echelle spectrograph mounted at the CFHT. Results. High S/N and high resolution Stokes V (circular), Q and U (linear) spectra were obtained. We constrained upper limits by a factor of 10 for previously observed DIBs. Furthermore, we analysed ~30 additional DIBs for which no spectropolarimetry data has been obtained before. This included the 9577 A DIB and the 8621 A DIB. Conclusions. The lack of polarisation in 45 DIB profiles suggests that none of the absorption lines is induced by a grain-type carrier. The strict upper limits, less than ~0.01%, derived for the observed lines-of-sight imply that if DIBs are due to gas-phase molecules these carriers have polarisation efficiencies which are at least 6 times, and up to 300 times, smaller than those predicted for grain-related carriers.Comment: 6 pages + 13 pages online material, submitted to A&

    Unusually Weak Diffuse Interstellar Bands toward HD 62542

    Get PDF
    As part of an extensive survey of diffuse interstellar bands (DIBs), we have obtained optical spectra of the moderately reddened B5V star HD 62542, which is known to have an unusual UV extinction curve of the type usually identified with dark clouds. The typically strongest of the commonly catalogued DIBs covered by the spectra -- those at 5780, 5797, 6270, 6284, and 6614 A -- are essentially absent in this line of sight, in marked contrast with other lines of sight of similar reddening. We compare the HD 62542 line of sight with others exhibiting a range of extinction properties and molecular abundances and interpret the weakness of the DIBs as an extreme case of deficient DIB formation in a dense cloud whose more diffuse outer layers have been stripped away. We comment on the challenges these observations pose for identifying the carriers of the diffuse bands.Comment: 20 pages, 4 figures; aastex; accepted by Ap
    • …
    corecore