11 research outputs found

    Lebectin and lebecetin, two C-type lectins from snake venom, inhibit alpha5beta1 and alphaV-containing integrins

    No full text
    International audienceIntegrins are essential protagonists in the complex multistep process of cancer progression and metastasis. We recently reported that lebectin, a novel C-type lectin from Macrovipera lebetina venom, displays an anti-integrin activity. In this study, we extend this observation to lebecetin, a second C-type lectin isolated from the same venom and previously reported as a potent inhibitor of platelet aggregation. Both venom lectins appear to exert their effect on cell adhesion, migration, invasion and proliferation by inhibiting α5β1 and αv-containing integrins. Moreover, the inhibition of α5β1 and αv integrins is likely due to the binding of venom peptides, as both lebectin and lebecetin co-immunoprecipitate with these integrins. Lebectin and lebecetin are thus the first examples of venom C-type lectins inhibiting an integrin other than the collagen receptor α2β1

    Lebecetin, a C-Lectin Protein from the Venom of<i> Macrovipera lebetina</i> That Inhibits Platelet Aggregation and Adhesion of Cancerous Cells

    No full text
    International audienceA novel C-lectin protein, lebecetin, was purified and characterized from the venom of Macrovipera lebetina. It is a disulfide-linked heterodimer of 15 and 16 kD. The subunits are homologous to each other and to the other snake venom proteins of the C-type (Ca(2+)-dependent) lectin superfamily. Lebecetin shows a potent inhibitory effect on whole blood and washed platelets induced by different agonists. It inhibits the agglutination of human fixed platelets in the presence of ristocetin. Lebecetin also interferes with the adhesion of IGR39 melanoma and HT29D4 adenocarcinoma cells. These two lines adhere to lebecetin used as matrix. Lebecetin is also able to strongly reduce IGR39 and HT29D4 cell adhesion to fibrinogen and laminin, but not to fibronectin and collagen types I and IV, respectively. Adhesion properties of lebecetin may thus involve integrin receptors

    Lebectin increases N-cadherin-mediated adhesion through PI3K/AKT pathway.

    No full text
    International audienceCell adhesion molecules, including cadherins and integrins, play an essential role during tumor progression and represent potential targets for the development of new therapeutic agents. We previously showed that lebectin, a C-type lectin protein (CLP) issued from Macrovipera lebectina snake venom, inhibits integrin-mediated migration of IGR39 melanoma cells. Here we assessed whether lebectin modulates cell-cell adhesion. We demonstrated that lebectin promotes N-cadherin/catenin complex reorganization at cell-cell contacts, inducing a strengthening of intercellular adhesion. This reorganization is associated to phosphorylation of beta-catenin on tyrosine 142 residue. Interestingly, lebectin acts on N-cadherin-mediated cell-cell contacts through PI3K/Akt pathway. This effect could contribute to the blockage of tumor cell migration previously observed

    Lebectin, a novel C-type lectin from Macrovipera lebetina venom, inhibits integrin-mediated adhesion, migration and invasion of human tumour cells.

    No full text
    International audienceThe adhesion receptors of the integrin family play an essential role during tumour progression and thus represent interesting potential targets for the development of new therapeutic agents. The snake venom contains natural inhibitors of integrin-ligand interactions called disintegrins. It also contains C-type lectin proteins mainly known as modulators of platelet aggregation. In this study, we demonstrate that lebectin, a novel C-type lectin isolated from Macrovipera lebetina venom, displayed an anti-integrin activity. Lebectin inhibited the integrin-mediated attachment of various tumour cell lines to different adhesion substrata. The C-type lectin also completely blocked cell migration towards fibronectin in haptotaxis assays and prevented invasion of fibrin gels by tumour cells. In addition, lebectin proved to be a potent inhibitor of tumour cell proliferation. Although the specific integrins affected by lebectin are not identified in this study, the integrin alpha 5 beta 1 might be involved

    Lebecetin, a potent antiplatelet C-type lectin from Macrovipera lebetina venom

    No full text
    International audienceA novel C-type lectin protein (CLP), lebecetin, was purified to homogeneity from the venom of Macrovipera lebetina by gel filtration on a Sephadex G75 column and ion exchange chromatography on Mono S column. Lebecetin is a basic protein with a pHi=9.9 and migrates in SDS-PAGE as a single band or two distinct bands under nonreducing and reducing conditions, respectively. These results are further confirmed by MALDI-TOF mass spectrometry that indicates a molecular mass of 29779 Da for native lebecetin and molecular masses of 15015 and 16296 Da for alpha and beta subunits, respectively. The N-terminal amino acid sequences of lebecetin subunits show a high degree of similarity with those of C-type lectin-like proteins. In addition, functional studies showed that lebecetin has a potent inhibitory effect on platelet aggregation induced by thrombin in a concentration-dependent manner. In contrast, no inhibitory effect is observed when platelets are exposed to thromboxane A2 (TxA2) mimetic (U46619) or arachidonic acid. Moreover, there was no effect either on blood coagulation or A, B and O washed human erythrocytes agglutination. Furthermore, flow cytometric analysis revealed that fluoro-isothiocyanate (FITC)-labelled lebecetin bound to human formalin fixed platelets in a saturable and concentration manner and this binding was specifically prevented by anti-glycoprotein Ib (GPIb) mAb. These observations suggest that lebecetin is a C-type lectin-like protein that selectively binds to platelet GPIb

    Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231.

    No full text
    International audienceC-type lectins like proteins display various biological activities and are known to affect especially platelet aggregation. Few of them have been reported to have anti-tumor effects. In this study, we have identified and characterized a new C-type lectin like protein, named lebecin. Lebecin is a heterodimeric protein of 30 kDa. The N-terminal amino acid sequences of both subunits were determined by Edman degradation and the entire amino acid sequences were deduced from cDNAs. The precursors of both lebecin subunits contain a 23-amino acid residue signal peptide and the mature α and β subunits are composed of 129 and 131 amino acids, respectively. Lebecin is shown to be a potent inhibitor of MDA-MB231 human breast cancer cells proliferation. Furthermore, lebecin dose-dependently inhibited the integrin-mediated attachment of these cells to different adhesion substrata. This novel C-type lectin also completely blocked MDA-MB231 cells migration towards fibronectin and fibrinogen in haptotaxis assays

    Lebectin, a Macrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo

    No full text
    International audienceIntegrins play an essential role in endothelial cell motility processes during angiogenesis and thus present interesting targets for the development of new anti-angiogenic agents. Snake venoms naturally contain a variety of proteins that can affect integrin-ligand interactions. Recently, the C-type lectin proteins (CLPs) have been characterized as efficient modulators of integrin functions. In this study, we investigated the anti-angiogenic activity of lebectin, a newly discovered CLP from Macrovipera lebetina venom. Human brain microvascular endothelial cells (HBMEC), used as an in vitro model, express alphavbeta3, alphavbeta5, and alpha5beta1 integrins, as well as the alpha2, alpha3, alpha6, and beta4 subunits. Our data show that lebectin acts as a very potent inhibitor (IC(50) approximately 0.5 nM) of HBMEC adhesion and migration on fibronectin by blocking the adhesive functions of both the alpha5beta1 and alphaV integrins. In addition, lebectin strongly inhibits both HBMEC in vitro tubulogenesis on Matrigel trade mark (IC(50) = 0.4 nM) and proliferation. Finally, using both a chicken CAM assay and a Matrigel trade mark Plug assay in nude mice, our results show that lebectin displays potent anti-angiogenic activity in vivo. Lebectin thus represents a new C-type lectin with anti-angiogenic properties with great potential for the treatment of angiogenesis-related diseases
    corecore