5 research outputs found

    Transposition of a Fungal Miniature Inverted-Repeat Transposable Element Through the Action of a Tc1-Like Transposase

    No full text
    The mimp1 element previously identified in the ascomycete fungus Fusarium oxysporum has hallmarks of miniature inverted-repeat transposable elements (MITEs): short size, terminal inverted repeats (TIRs), structural homogeneity, and a stable secondary structure. Since mimp1 has no coding capacity, its mobilization requires a transposase-encoding element. On the basis of the similarity of TIRs and target-site preference with the autonomous Tc1-like element impala, together with a correlated distribution of both elements among the Fusarium genus, we investigated the ability of mimp1 to jump upon expression of the impala transposase provided in trans. Under these conditions, we present evidence that mimp1 transposes by a cut-and-paste mechanism into TA dinucleotides, which are duplicated upon insertion. Our results also show that mimp1 reinserts very frequently in genic regions for at least one-third of the cases. We also show that the mimp1/impala double-component system is fully functional in the heterologous species F. graminearum, allowing the development of a highly efficient tool for gene tagging in filamentous fungi

    Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance

    No full text
    Host resistance and fungicide treatments are cornerstones of plant-disease control. Here, we show that these treatments allow sex and modulate parenthood in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that the Z. tritici-wheat interaction complies with the gene-for-gene model by identifying the effector AvrStb6, which is recognized by the wheat resistance protein Stb6. Recognition triggers host resistance, thus implying removal of avirulent strains from pathogen populations. However, Z. tritici crosses on wheat show that sex occurs even with an avirulent parent, and avirulence alleles are thereby retained in subsequent populations. Crossing fungicide-sensitive and fungicide-resistant isolates under fungicide pressure results in a rapid increase in resistance-allele frequency. Isolates under selection always act as male donors, and thus disease control modulates parenthood. Modeling these observations for agricultural and natural environments reveals extended durability of host resistance and rapid emergence of fungicide resistance. Therefore, fungal sex has major implications for disease control
    corecore