477 research outputs found

    Aurora-A/STK15/BTAK overexpression induces centrosome amplification, chromosomal instability, and transformation in human urothelial cells

    Get PDF
    Aurora-A/STK15/BTAK kinase encoding gene, located on chromosome 20q13, is frequently amplified and overexpressed in human cancers. Sen et al. previously demonstrated that Aurora-A amplification and overexpression are associated with aneuploidy and clinically aggressive bladder cancer (J Natl Cancer Inst (2002) 94, 1320-1329). To examine if this association is the direct result of Aurora-A gene amplification and overexpression, an immortalized human urothelial cell line (SV-HUC) was infected with an adenoviral Aurora-A-green fluorescent protein (Ad-Aurora-A-GFP) fusion construct inducing ectopic expression of the resulting fusion protein. Controls included mock-infected and adenoviral-GFP infected cells. Ectopic expression of transduced Aurora-A did not alter the doubling time of the SV-HUC cells but significantly increased the number of cells with multiple centrosomes displaying aneuploidy and increased colony formation in soft agar. This is the first report demonstrating that overexpression of Aurora-A induces centrosome anomalies together with chromosomal instability and malignant transformation-associated phenotypic changes in immortalized human urothelial cells, thus supporting the hypothesis that this gene plays an important role in the development of aggressive bladder cancer

    Influence of serum testosterone on urinary continence and sexual activity in patients undergoing radical prostatectomy for clinically localized prostate cancer

    Get PDF
    The aim of the present study was to evaluate how serum testosterone level (T) can affect urinary continence and erectile function in patients undergoing radical prostatectomy (RP). We included 257 patients with clinically localized prostate cancer, those who had filled out preoperative quality of life questionnaires (University of California, Los Angeles Prostate Cancer Index, International Index of Erectile Function (IIEF)), and those who had T and total PSA sampled the day before surgery. We calculated correlations between T and age, body mass index (BMI), PSA, urinary function or bother (UF, UB) and sexual function or bother (SF, SB) and IIEF-5 in the whole population and in sub-populations with normal (⩾10.4 nmol l−1) and low (<10.4 ng ml−1) T using Pearson's and Spearman's correlation coefficients. We evaluated differences in these parameters between patients with low and normal T using the unpaired samples t-test and Mann–Whitney test, and finally the correlation between UF and SF, UB and SB, and between PSA and T in the overall population, and separately in patients with low and normal T using the Pearson's correlation coefficient. Mean preoperative T was 13.5 nmol l−1 and 23.7% of patients presented a low T. Mean age, mean BMI and mean preoperative total PSA at RP were 64.3 years, 25.9 kg m−2 and 9.0 ng ml−1, respectively. BMI was negatively correlated with T in the overall population (r=−0.266; P=0.02); moreover, patients with normal T presented lower BMI compared with patients with low T (25.7 vs 27.6: P=0.02). We found a significant correlation between SF scores and T in patients with normal T (r=0.1777: P=0.05). SF was significantly higher in patients with normal T compared with those with low T (74.8 vs 64.8: P=0.05). Furthermore, UF and UB were significantly correlated with SF (r=0.2544: P<0.01) and SB (r=0.2512: P=0.01), respectively, in men with normal T. Serum T was significantly correlated with PSA in men with low T (r=0.3874: P=0.0029), whereas this correlation was missed in the whole population and in men with normal T. The correlation between preoperative PSA and T in men with low T is in agreement with the ‘saturation' model proposed by Morgentaler. The correlation between basal T and preoperative erectile function and urinary continence underlines the importance of assessing T before RP

    Tri-Modality therapy with I-125 brachytherapy, external beam radiation therapy, and short- or long-term hormone therapy for high-risk localized prostate cancer (TRIP): study protocol for a phase III, multicenter, randomized, controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with high Gleason score, elevated prostate specific antigen (PSA) level, and advanced clinical stage are at increased risk for both local and systemic relapse. Recent data suggests higher radiation doses decrease local recurrence and may ultimately benefit biochemical, metastasis-free and disease-specific survival. No randomized data is available on the benefits of long-term hormonal therapy (HT) in these patients. A prospective study on the efficacy and safety of trimodality treatment consisting of HT, external beam radiation therapy (EBRT), and brachytherapy (BT) for high-risk prostate cancer (PCa) is strongly required.</p> <p>Methods/Design</p> <p>This is a phase III, multicenter, randomized controlled trial (RCT) of trimodality with BT, EBRT, and HT for high-risk PCa (TRIP) that will investigate the impact of adjuvant HT following BT using iodine-125 (<sup>125</sup>I-BT) and supplemental EBRT with neoadjuvant and concurrent HT. Prior to the end of September 2012, a total of 340 patients with high-risk PCa will be enrolled and randomized to one of two treatment arms. These patients will be recruited from more than 41 institutions, all of which have broad experience with <sup>125</sup>I-BT. Pathological slides will be centrally reviewed to confirm patient eligibility. The patients will commonly undergo 6-month HT with combined androgen blockade (CAB) before and during <sup>125</sup>I-BT and supplemental EBRT. Those randomly assigned to the long-term HT group will subsequently undergo 2 years of adjuvant HT with luteinizing hormone-releasing hormone agonist. All participants will be assessed at baseline and every 3 months for the first 30 months, then every 6 months until 84 months from the beginning of CAB.</p> <p>The primary endpoint is biochemical progression-free survival. Secondary endpoints are overall survival, clinical progression-free survival, disease-specific survival, salvage therapy non-adaptive interval, and adverse events.</p> <p>Discussion</p> <p>To our knowledge, there have been no prospective studies documenting the efficacy and safety of trimodality therapy for high-risk PCa. The present RCT is expected to provide additional insight regarding the potency and limitations of the addition of 2 years of adjuvant HT to this trimodality approach, and to establish an appropriate treatment strategy for high-risk PCa.</p> <p>Trial registration</p> <p>UMIN000003992</p

    Chromosomal Aberrations in Bladder Cancer: Fresh versus Formalin Fixed Paraffin Embedded Tissue and Targeted FISH versus Wide Microarray-Based CGH Analysis

    Get PDF
    Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs) were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay) widely used for the detection of Transitional Cell Carcinoma (TCC) of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN) and on Formalin Fixed Paraffin Embedded (FFPE) tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions
    corecore