54 research outputs found

    Thermal Creation of Electron Spin Polarization in n-Type Silicon

    Get PDF
    Conversion of heat into a spin-current in electron doped silicon can offer a promising path for spin-caloritronics. Here we create an electron spin polarization in the conduction band of n-type silicon by producing a temperature gradient across a ferromagnetic tunnel contact. The substrate heating experiments induce a large spin signal of 95 μ\muV, corresponding to 0.54 meV spin-splitting in the conduction band of n-type silicon by Seebeck spin tunneling mechanism. The thermal origin of the spin injection has been confirmed by the quadratic scaling of the spin signal with the Joule heating current and linear dependence with the heating power

    Efficient Spin Injection into Silicon and the Role of the Schottky Barrier

    Get PDF
    Implementing spin functionalities in Si, and understanding the fundamental processes of spin injection and detection, are the main challenges in spintronics. Here we demonstrate large spin polarizations at room temperature, 34% in n-type and 10% in p-type degenerate Si bands, using a narrow Schottky and a SiO2 tunnel barrier in a direct tunneling regime. Furthermore, by increasing the width of the Schottky barrier in non-degenerate p-type Si, we observed a systematic sign reversal of the Hanle signal in the low bias regime. This dramatic change in the spin injection and detection processes with increased Schottky barrier resistance may be due to a decoupling of the spins in the interface states from the bulk band of Si, yielding a transition from a direct to a localized state assisted tunneling. Our study provides a deeper insight into the spin transport phenomenon, which should be considered for electrical spin injection into any semiconductor

    Two-Dimensional Spintronic Circuit Architectures on Large Scale Graphene

    Full text link
    Solid-state electronics based on utilizing the electron spin degree of freedom for storing and processing information can pave the way for next-generation spin-based computing. However, the realization of spin communication between multiple devices in complex spin circuit geometries, essential for practical applications, is still lacking. Here, we demonstrate the spin current propagation in two-dimensional (2D) circuit architectures consisting of multiple devices and configurations using a large area CVD graphene on SiO2/Si substrate at room temperature. Taking advantage of the significant spin transport distance reaching 34 {\mu}m in commercially available wafer-scale graphene grown on Cu foil, we demonstrate that the spin current can be effectively communicated between the magnetic memory elements in graphene channels within 2D circuits of Y-junction and Hexa-arm architectures. We further show that by designing graphene channels and ferromagnetic elements at different geometrical angles, the symmetric and antisymmetric components of the Hanle spin precession signal can be remarkably controlled. These findings lay the foundation for the design of complex 2D spintronic circuits, which can be integrated into efficient electronics based on the transport of pure spin currents

    Disorder is not always bad for charge-to-spin conversion in WTe2

    Get PDF
    The Wang group at Stanford University demonstrates disordered WTex films for efficient charge-to-spin conversion phenomena. The deposition of these films by sputtering and the charge-to-spin conversion resilience against disorder make them attractive for applications in new magnetic memory devices

    Gate-tunable Hall sensors on large area CVD graphene protected by h-BN with 1D edge contacts

    Get PDF
    Graphene is an excellent material for Hall sensors due to its atomically thin structure, high carrier mobility and low carrier density. However, graphene devices need to be protected from the environment for reliable and durable performance in different environmental conditions. Here we present magnetic Hall sensors fabricated on large area commercially available CVD graphene protected by exfoliated hexagonal boron nitride (h-BN). To connect the graphene active regions of Hall samples to the outputs the 1D edge contacts were utilized which show reliable and stable electrical properties. The operation of the Hall sensors shows the current-related sensitivity up to 345 V/(AT). By changing the carrier concentration and type in graphene by the application of gate voltage we are able to tune the Hall sensitivity

    Room Temperature Electrical Detection of Spin Polarized Currents in Topological Insulators

    Full text link
    Topological insulators (TIs) are a new class of quantum materials that exhibit spin momentum locking (SML) of massless Dirac fermions in the surface states. Usually optical methods, such as angle and spin-resolved photoemission spectroscopy, have been employed to observe the helical spin polarization in the surface states of three-dimensional (3D) TIs up to room temperatures. Recently, spin polarized surface currents in 3D TIs were detected by electrical methods using ferromagnetic (FM) contacts in a lateral spin-valve measurement geometry. However, probing the spin texture with such electrical approaches is so far limited to temperatures below 125K, which restricts its application potential. Here we demonstrate the room temperature electrical detection of the spin polarization on the surface of Bi2_2Se3_3 due to SML by employing spin sensitive FM tunnel contacts. The current-induced spin polarization on the Bi2_2Se3_3 surface is probed at room temperature by measuring a spin-valve signal while switching the magnetization direction of the FM detector. The spin signal increases linearly with current bias, reverses sign with current direction, exhibits a weak temperature dependence and decreases with higher TI thickness, as predicted theoretically. Our results demonstrate the electrical detection of the spin polarization on the surface of 3D TIs, which could lead to innovative spin-based quantum information technology at ambient temperatures.Comment: Incl. Supplementary informatio

    Gate-tunable Spin-Galvanic Effect in Graphene Topological insulator van der Waals Heterostructures at Room Temperature

    Get PDF
    Unique electronic spin textures in topological states of matter are promising for emerging spin-orbit driven memory and logic technologies. However, there are several challenges related to the enhancement of their performance, electrical gate-tunability, interference from trivial bulk states, and heterostructure interfaces. We address these challenges by integrating two-dimensional graphene with a three-dimensional topological insulator (TI) in van der Waals heterostructures to take advantage of their remarkable spintronic properties and engineer proximity-induced spin-charge conversion phenomena. In these heterostructures, we experimentally demonstrate a gate tunable spin-galvanic effect (SGE) at room temperature, allowing for efficient conversion of a nonequilibrium spin polarization into a transverse charge current. Systematic measurements of SGE in various device geometries via a spin switch, spin precession, and magnetization rotation experiments establish the robustness of spin-charge conversion in the Gr-TI heterostructures. Importantly, using a gate voltage, we reveal a strong electric field tunability of both amplitude and sign of the spin-galvanic signal. These findings provide an efficient route for realizing all-electrical and gate-tunable spin-orbit technology using TIs and graphene in heterostructures, which can enhance the performance and reduce power dissipation in spintronic circuits

    Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures

    Get PDF
    Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications

    Charge-spin conversion signal in WTe2 van der Waals hybrid devices with a geometrical design

    Full text link
    The efficient generation and control of spin polarization via charge-spin conversion in topological semimetals are desirable for future spintronic and quantum technologies. Here, we report the charge-spin conversion (CSC) signals measured in a Weyl semimetal candidate WTe2 based hybrid graphene device with a geometrical design. Notably, the geometrical angle of WTe2 on the graphene spin-valve channel yields contributions to symmetric and anti-symmetric CSC signal components. The spin precession measurements of CSC signal at different gate voltages and ferromagnet magnetization shows the robustness of the CSC in WTe2 at room temperature. These results can be useful for the design of heterostructure devices and in the architectures of two-dimensional spintronic circuits
    • …
    corecore