693 research outputs found
Local atomic arrangement and martensitic transformation in NiMnIn: An EXAFS Study
Heusler alloys that undergo martensitic transformation in ferromagnetic state
are of increasing scientific and technological interest. These alloys show
large magnetic field induced strains upon martensitic phase change thus making
it a potential candidate for magneto-mechanical actuation. The crystal
structure of martensite is an important factor that affects both the magnetic
anisotropy and mechanical properties of such materials. Moreover, the local
chemical arrangement of constituent atoms is vital in determining the overall
physical properties. NiMnIn is one such ferromagnetic
shape memory alloy that displays exotic properties like large magnetoresistance
at moderate field values. In this work, we present the extended x-ray
absorption fine-structure measurements (EXAFS) on the bulk
NiMnIn which reveal the local structural change that
occurs upon phase transformation. The change in the bond lengths between
different atomic species helps in understanding the type of hybridization which
is an important factor in driving such Ni-Mn based systems towards martensitic
transformation
Local Atomic Structure of Martensitic NiMnGa: An EXAFS Study
The local atomic structure of NiMnGa with 0
0.16 alloys was explored using Mn and Ga K-edge Extended X-ray Absorption Fine
Structure (EXAFS) measurement. Inorder to study the atomic re-arrangements that
occur upon martensitic transformation, room temperature and low temperature
EXAFS were recorded. The changes occurring in the L2 unit cell and the bond
lengths obtained from the analysis enables us to determine the modulation
amplitudes over which the constituent atoms move giving rise to shuffling of
the atomic planes in the modulated structure. The EXAFS analysis also suggests
the changes in hybridization of Ga- and Ni- orbitals associated with the
local symmetry breaking upon undergoing martensitic transition.Comment: Accepted for publication in Physical Review
Inelastic Neutron scattering in CeSi_{2-x}Ga_x ferromagnetic Kondo lattice compounds
Inelastic neutron scattering investigation on ferromagnetic Kondo lattice
compounds belonging to CeSi_{2-x}Ga_{x}, x = 0.7, 1.0 and 1.3, system is
reported. The thermal evolution of the quasielastic response shows that the
Kondo interactions dominate over the RKKY interactions with increase in Ga
concentration from 0.7 to 1.3. This is related to the increase in k-f
hybridization with increasing Ga concentration. The high energy response
indicates the ground state to be split by crystal field in all three compounds.
Using the experimental results we have calculated the crystal field parameters
in all three compounds studied here.Comment: 12 Pages Revtex, 2 eps figures
Effect of B-site Dopants on Magnetic and Transport Properties of LaSrCoRuO
Effect of Co, Ru and Cu substitution at B and B' sites on the magnetic and
transport properties of LaSrCoRuO have been investigated. All the doped
compositions crystallize in the monoclinic structure in the space group
indicating a double perovskite structure. While the magnetization and
conductivity increase in Co and Ru doped compounds, antiferromagnetism is seen
to strengthen in the Cu doped samples. These results are explained on the basis
of a competition between linear Co-O-Ru-O-Co and perpendicular Co-O-O-Co
antiferromagnetic interactions and due to formation of Ru-O-Ru ferromagnetic
networks
Controlled release from zein matrices: Interplay of drug hydrophobicity and pH
Purpose: In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin, paracetamol and ranitidine. Methods: Caplets were prepared by hot-melt extrusion (HME) and injection moulding (IM). Each of the three model drugs were tested on two drug loadings in various dissolution media. The physical state of the drug, microstructure and hydration behaviour were investigated to build up understanding for the release behaviour from zein based matrix for drug delivery. Results: Drug crystallinity of the caplets increases with drug hydrophobicity. For ranitidine and indomethacin, swelling rates, swelling capacity and release rates were pH dependent as a consequence of the presence of charged groups on the drug molecules. Both hydration rates and release rates could be approached by existing models. Conclusion: Both the drug state as pH dependant electrostatic interactions are hypothesised to influence release kinetics. Both factors can potentially be used factors influencing release kinetics release, thereby broadening the horizon for zein as a tuneable release agent
- …
