Heusler alloys that undergo martensitic transformation in ferromagnetic state
are of increasing scientific and technological interest. These alloys show
large magnetic field induced strains upon martensitic phase change thus making
it a potential candidate for magneto-mechanical actuation. The crystal
structure of martensite is an important factor that affects both the magnetic
anisotropy and mechanical properties of such materials. Moreover, the local
chemical arrangement of constituent atoms is vital in determining the overall
physical properties. Ni50Mn35In15 is one such ferromagnetic
shape memory alloy that displays exotic properties like large magnetoresistance
at moderate field values. In this work, we present the extended x-ray
absorption fine-structure measurements (EXAFS) on the bulk
Ni50Mn35In15 which reveal the local structural change that
occurs upon phase transformation. The change in the bond lengths between
different atomic species helps in understanding the type of hybridization which
is an important factor in driving such Ni-Mn based systems towards martensitic
transformation