9 research outputs found

    An instructive role for Interleukin-7 receptor α in the development of human B-cell precursor leukemia

    Get PDF
    © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Kinase signaling fuels growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Yet its role in leukemia initiation is unclear and has not been shown in primary human hematopoietic cells. We previously described activating mutations in interleukin-7 receptor alpha (IL7RA) in poor-prognosis "ph-like" BCP-ALL. Here we show that expression of activated mutant IL7RA in human CD34+ hematopoietic stem and progenitor cells induces a preleukemic state in transplanted immunodeficient NOD/LtSz-scid IL2Rγnull mice, characterized by persistence of self-renewing Pro-B cells with non-productive V(D)J gene rearrangements. Preleukemic CD34+CD10highCD19+ cells evolve into BCP-ALL with spontaneously acquired Cyclin Dependent Kinase Inhibitor 2 A (CDKN2A) deletions, as commonly observed in primary human BCP-ALL. CRISPR mediated gene silencing of CDKN2A in primary human CD34+ cells transduced with activated IL7RA results in robust development of BCP-ALLs in-vivo. Thus, we demonstrate that constitutive activation of IL7RA can initiate preleukemia in primary human hematopoietic progenitors and cooperates with CDKN2A silencing in progression into BCP-ALL.This work was supported by the Israel Science Foundation (# 1178/12 to S.I.), Children with Cancer (UK) (S.I. and T.E.), Swiss Bridge Foundation (S.I.), WLBH Foundation (S.I.), Waxman Cancer Research Foundation (S.I.), US–Israel Binational Science Foundation, Israeli health ministry ERA-NET program (#CANCER11-FP-127 to S.I.), Hans Neufeld Stiftung, the International Collaboration Grant from the Jacki and Bruce Barron Cancer Research Scholars’ Program, a partnership of the Israel Cancer Research Fund and City of Hope (S.I. grants # 00161), the Nevzlin Genomic Center for Precision Medicine in Schneider Children’s Medical Center of Israel, The European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813091 (S.I.) and the Israel Childhood Cancer Foundation (S.I.). I.G. was partially supported by Israeli ministry of Immigrant Absorption.info:eu-repo/semantics/publishedVersio

    Single-cell mass cytometry and machine learning predict relapse in childhood leukemia

    No full text
    Improved insight into cancer cell populations responsible for treatment failure will lead to better outcomes for patients. We herein highlight a single-cell study of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) at diagnosis that revealed hidden developmentally dependent cell signaling states uniquely associated with relapse

    SRC/ABL inhibition disrupts CRLF2-driven signaling to induce cell death in B-cell acute lymphoblastic leukemia.

    Full text link
    Children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) overexpressing the CRLF2 gene (hiCRLF2) have poor prognosis. CRLF2 protein overexpression leads to activated JAK/STAT signaling and trials are underway using JAK inhibitors to overcome treatment failure. Pre-clinical studies indicated limited efficacy of single JAK inhibitors, thus additional pathways must be targeted in hiCRLF2 cells. To identify additional activated networks, we used single-cell mass cytometry to examine 15 BCP-ALL primary patient samples. We uncovered a coordinated signaling network downstream of CRLF2 characterized by co-activation of JAK/STAT, PI3K, and CREB pathways. This CRLF2-driven network could be more effectively disrupted by SRC/ABL inhibition than single-agent JAK or PI3K inhibition, and this could be demonstrated even in primary minimal residual disease (MRD) cells. Our study suggests SCR/ABL inhibition as effective in disrupting the cooperative functional networks present in hiCRLF2 BCP-ALL patients, supporting further investigation of this strategy in pre-clinical studies
    corecore