4 research outputs found
Interferometric imaging of carbon monoxide in comet C/1995 O1 (Hale-Bopp): evidence for a strong rotating jet
Observations of the CO J(1-0) 115 GHz and J(2-1) 230 GHz lines in comet
C/1995 O1 (Hale-Bopp) were performed with the IRAM Plateau de Bure
interferometer on 11 March, 1997. The observations were conducted in both
single-dish (ON-OFF) and interferometric modes with 0.13 km s-1 spectral
resolution. Images of CO emission with 1.7 to 3" angular resolution were
obtained. The ON-OFF and interferometric spectra show a velocity shift with
sinusoidal time variations related to the Hale-Bopp nucleus rotation of 11.35
h. The peak position of the CO images moves perpendicularly to the spin axis
direction in the plane of the sky. This suggests the presence of a CO jet,
which is active night and day at about the same extent, and is spiralling with
nucleus rotation. The high quality of the data allows us to constrain the
characteristics of this CO jet. We have developed a 3-D model to interpret the
temporal evolution of CO spectra and maps. The CO coma is represented as the
combination of an isotropic distribution and a spiralling gas jet, both of
nucleus origin. Spectra and visibilities (the direct output of interferometric
data) analysis shows that the CO jet comprises ~40% the total CO production and
is located at a latitude ~20 degrees North on the nucleus surface. Our
inability to reproduce all observational characteristics shows that the real
structure of the CO coma is more complex than assumed, especially in the first
thousand kilometres from the nucleus. The presence of another moving CO
structure, faint but compact and possibly created by an outburst, is
identified.Comment: 20 pages, 26 figures. Accepted for publication in Astronomy &
Astrophysic