5,003 research outputs found

    Space-Time Tradeoffs for Distributed Verification

    Full text link
    Verifying that a network configuration satisfies a given boolean predicate is a fundamental problem in distributed computing. Many variations of this problem have been studied, for example, in the context of proof labeling schemes (PLS), locally checkable proofs (LCP), and non-deterministic local decision (NLD). In all of these contexts, verification time is assumed to be constant. Korman, Kutten and Masuzawa [PODC 2011] presented a proof-labeling scheme for MST, with poly-logarithmic verification time, and logarithmic memory at each vertex. In this paper we introduce the notion of a tt-PLS, which allows the verification procedure to run for super-constant time. Our work analyzes the tradeoffs of tt-PLS between time, label size, message length, and computation space. We construct a universal tt-PLS and prove that it uses the same amount of total communication as a known one-round universal PLS, and tt factor smaller labels. In addition, we provide a general technique to prove lower bounds for space-time tradeoffs of tt-PLS. We use this technique to show an optimal tradeoff for testing that a network is acyclic (cycle free). Our optimal tt-PLS for acyclicity uses label size and computation space O((logn)/t)O((\log n)/t). We further describe a recursive O(logn)O(\log^* n) space verifier for acyclicity which does not assume previous knowledge of the run-time tt.Comment: Pre-proceedings version of paper presented at the 24th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2017

    Dissipationless transport in low density bilayer systems

    Full text link
    In a bilayer electronic system the layer index may be viewed as the z-component of an isospin-1/2. An XY isospin-ordered ferromagnetic phase was observed in quantum Hall systems and is predicted to exist at zero magnetic field at low density. This phase is a superfluid for opposite currents in the two layers. At B=0 the system is gapless but superfluidity is not destroyed by weak disorder. In the quantum Hall case, weak disorder generates a random gauge field which probably does not destroy superfluidity. Experimental signatures include Coulomb drag and collective mode measurements.Comment: 4 pages, no figures, submitted to Phys. Rev. Let

    Spin Bose Glass Phase in Bilayer Quantum Hall Systems at ν=2\nu=2

    Full text link
    We develop an effective spin theory to describe magnetic properties of the ν=2\nu=2 Quantum Hall bilayer systems. In the absence of disorder this theory gives quantitative agreement with the results of microscopic Hartree-Fock calculations, and for finite disorder it predicts the existence of a novel spin Bose glass phase. The Bose glass is characterized by the presence of domains of canted antiferromagnetic phase with zero average antiferromagnetic order and short range mean antiferromagnetic correlations. It has infinite antiferromagnetic transverse susceptibility, finite longitudinal spin susceptibility and specific heat linear in temperature. Transition from the canted antiferromagnet phase to the spin Bose glass phase is characterized by a universal value of the longitudinal spin conductance.Comment: 4 pages, 4 eps figure

    Summarizing and measuring development activity

    Get PDF
    Software developers pursue a wide range of activities as part of their work, and making sense of what they did in a given time frame is far from trivial as evidenced by the large number of awareness and coordination tools that have been developed in recent years. To inform tool design for making sense of the information available about a developer's activity, we conducted an empirical study with 156 GitHub users to investigate what information they would expect in a summary of development activity, how they would measure development activity, and what factors in uence how such activity can be condensed into textual summaries or numbers. We found that unexpected events are as important as expected events in summaries of what a developer did, and that many developers do not believe in measuring development activity. Among the factors that in uence summarization and measurement of development activity, we identified development experience and programming languages.Christoph Treude, Fernando Figueira Filho, Uirá Kulesz

    Studies on changes in hematological and biochemical parameters in smokeless tobacco (Gutka) chewing auto drivers in Nellore district of Andhra Pradesh, India

    Get PDF
    The present study was designed to evaluate the effect of Smokeless tobacco on some biochemical and haematological parameters. It was observed that hematological parameters of Autodrivers including hemoglobin content, white blood cell and leukocyte counts were higher in Gutka consumers than in controls, where as monocytes and basophils counts were lower. Higher biochemical parameters like serum cholesterol, glucose and protein were observed in blood samples of Gutka consumers. Decrease in serum protein levels and remarkable increase in Serum cholesterol and glucose levels were observed in Gutka consumers when compared to controls. There existed considerable difference among different hematological and biochemical parameters of gutka chewers when compared to controls

    The Discovery of the Zeeman Effect in 38 GHz Class II Methanol Masers

    Full text link
    Magnetic fields likely play an important role in star formation, but the number of directly measured magnetic field strengths remains scarce. We observed the 38.3 and 38.5 GHz Class II methanol (CH3_3OH) maser lines toward the high mass star forming region NGC 6334F for the Zeeman effect. The observed spectral profiles have two prominent velocity features which can be further decomposed through Gaussian component fitting. In several of these fitted Gaussian components we find significant Zeeman detections, with zBloszB_{\rm los} in the range from 8 to 46 Hz. If the Zeeman splitting factor zz for the 38 GHz transitions is of the order of \sim1 Hz mG1^{-1}, similar to that for several other CH3_3OH maser lines, then magnetic fields in the regions traced by these masers would be in the range of 8-46 mG. Such magnetic field values in high mass star forming regions agree with those detected in the better-known 6.7 GHz Class II CH3_3OH maser line. Since Class II CH3_3OH masers are radiatively pumped close to the protostar and likely occur in the accretion disk or the interface between the disk and outflow regions, such fields likely have significant impact on the dynamics of these disks.Comment: 10 pages, 7 figures, ApJ accepte

    Pressure-tuning of the electron-phonon coupling: the insulator to metal transition in manganites

    Get PDF
    A comprehensive understanding of the physical origin of the unique magnetic and transport properties of A_(1-x)A'^xMnO_3 manganites (A = trivalent rare-earth and A' = divalent alkali-earth metal) is still far from being achieved. The complexity of these systems arises from the interplay among several competing interactions of comparable strength. Recently the electron-phonon coupling, triggered by a Jahn-Teller distortion of the MnO_6 octahedra, has been recognised to play an essential role in the insulator to metal transition and in the closely related colossal magneto-resistance. The pressure tuning of the octahedral distortion gives a unique possibility to separate the basic interactions and, at least in principle, to follow the progressive transformation of a manganite from an intermediate towards a weak electron-phonon coupling regime. Using a diamond anvil cell, temperature and pressure-dependent infrared absorption spectra of La_(0.75)Ca_(0.25)MnO_3 have been collected and, from the spectral weight analysis, the pressure dependence of the insulator to metal transition temperature T_IM has been determined for the first time up to 11.2 GPa. The T_IM(P) curve we proposed to model the present data revealed a universality character in accounting for the whole class of intermediate coupling compounds. This property can be exploited to distinguish the intermediate from the weak coupling compounds pointing out the fundamental differences between the two coupling regimes.Comment: 8 pages, 4 figure

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996
    corecore