
Summarizing and Measuring Development Activity

Christoph Treude, Fernando Figueira Filho, Uirá Kulesza
Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte
Natal, RN, Brazil

{ctreude,fernando,uira}@dimap.ufrn.br

ABSTRACT
Software developers pursue a wide range of activities as part
of their work, and making sense of what they did in a given
time frame is far from trivial as evidenced by the large num-
ber of awareness and coordination tools that have been de-
veloped in recent years. To inform tool design for making
sense of the information available about a developer’s ac-
tivity, we conducted an empirical study with 156 GitHub
users to investigate what information they would expect in
a summary of development activity, how they would measure
development activity, and what factors influence how such
activity can be condensed into textual summaries or num-
bers. We found that unexpected events are as important as
expected events in summaries of what a developer did, and
that many developers do not believe in measuring develop-
ment activity. Among the factors that influence summariza-
tion and measurement of development activity, we identified
development experience and programming languages.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

Keywords
Summarization, empirical study, development activity

1. INTRODUCTION AND MOTIVATION
Software developers produce a large number of artifacts

in their day-to-day work, ranging from source code and de-
velopment issues to online discussions and documentation.
Making sense of this plethora of data is becoming harder
with every new artifact created. Despite many metrics, soft-
ware projects continue to be difficult to predict and risky to
conduct [6] and finding relevant information within the vast
amount of information available is challenging [23].

The need to condense the activity taking place in a soft-
ware project into a more consumable format has given rise
to software analytics [7] and many tools that offer awareness

support [54], such as the dashboards in IBM’s Jazz [56] or
Palant́ır’s views for “awareness in the large” [50]. Many of
these tools attempt to condense development activity into
numbers, such as the number of issues closed by a devel-
oper or the number of open issues. While the resulting
peer pressure is often seen as a good thing (“The need to
look like you are making progress is useful” [56]), it is ev-
ident that numbers are insufficient to capture all aspects
of development activity, as we found in previous research:
“Just because one team has a lot more defects than another,
that doesn’t necessarily mean that the quality of that com-
ponent is any worse” [56]. Recently, qualitative dashboards
have been proposed to improve developers’ situation aware-
ness [1]. Even though many metrics have been introduced to
measure a developer’s activity, such as the number of tasks
per month [59], the number of source code lines per hour [17],
or the number of logical source statements per month [34],
none of these metrics have found wide acceptance.

Given recent advances in the automatic summarization of
software artifacts, such as bug reports [47, 48], classes [43],
methods [51], or code snippets [58], it is conceivable that
summaries could be generated to capture the development
activity of a developer or team in a given time frame. In
other words, development activity cannot only be condensed
into numbers, but also into textual summaries. Potential
advantages of such summaries would be the possibility of
explaining rather than simply measuring, the opportunity
to include context where needed, and reducing the cogni-
tive effort required for consuming, interpreting, and making
sense of large amounts of data.

This combination of textual and numerical data to sum-
marize development activity is the ultimate goal of this
work. As a first step, here we present the results of an
empirical study with 156 GitHub users to identify (1) what
information such a summary should contain, (2) how de-
velopment activity can be measured, and (3) what factors
influence how development activity can be condensed. Us-
ing analysis methods from Grounded Theory, we found that
unexpected events are as important as expected events when
summarizing development activity, and that many develop-
ers do not believe in the existence of any measure suitable
for measuring development activity. We also identify factors
which influence how development activity can be condensed,
including experience and programming languages.

2. RELATED WORK
Work related to this research can be divided into work on

productivity, awareness, and summarization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2786827

625

2.1 Measuring Developer Productivity
Previous work on developer productivity has attempted

to measure developer activity in different ways. Looking
at different conceptualizations of developer productivity in
the literature, Meyer et al. [39] found a long list of defini-
tions: the number of tasks [59], function points [30], lines
of code [17, 44], modification requests [42], or logical source
statements [34] in a given time frame or compared to spent
effort [28, 32]; or alternatively the resolution time of a mod-
ification request [8] or the ratio of editing events to selection
and navigation events [31]. Since there is no consensus on
how to measure developer activity, in this work, we asked
developers how they would design such a measure.

Meyer et al. [39] conducted a study on software devel-
opers’ perceptions of their own productivity through a sur-
vey and an observational study. They found that develop-
ers perceive their days as productive when they complete
many or big tasks without significant interruptions or con-
text switches. In contrast to their work, we focus on mea-
suring developer activity. In earlier work, DeMarco and Lis-
ter [16] studied programmers in a one-day implementation
benchmarking exercise. They found evidence that charac-
teristics of the workplace and of the organization seemed to
explain a significant part of the difference in productivity
between different programmers. Blackburn et al. [3] found
team size to have a negative correlation with productivity.
Boehm [4] described various avenues for improving devel-
oper productivity, including better management, staffing,
incentives, work environments, integrated development en-
vironments, rework elimination, and component reuse. In
contrast, in this work, we focus on summarizing and mea-
suring development activity.

2.2 Awareness in Software Development
Awareness is related to social transparency [55] and de-

fined as “an understanding of the activities of others, which
provide context for your own activity” [18]. Awareness
spans technical and social aspects [14] as well as articula-
tion work [40], and it is indispensable in sustaining team
cognition [25] and in constructing mental models of a soft-
ware project [35]. However, who should be aware of whom
is an open question [15].

Since maintaining awareness is time-consuming [45], many
tools have been developed to support awareness in software
development. Seesoft [19] is a visualization approach which
maps each line of source code to a thin row and uses colours
to indicate changes. Augur [24] adds software development
activities to a Seesoft-style visualization, allowing develop-
ers to explore relationships between artifacts and activities.
Palant́ır [49] provides insight into workspaces of other de-
velopers, focusing on artifact changes. FastDASH [2] uses
a representation of a shared code base to highlight current
activities aggregated at the level of files and methods. So-
cial Health Overview [20] mines the history of development
artifacts to reveal social and historical patterns in the devel-
opment process. WIPDash [29] is a large screen visualization
for small co-located teams designed to increase awareness of
tasks and source code activity. The dashboard component
of IBM’s Jazz [56] is intended to provide information at a
glance and to allow easy navigation to more complete in-
formation. The dashboards of the Pco-Vision platform [41]
are intended to support and enhance project-based learning.
Our work is related to awareness since summaries of devel-

opment activity have the potential to support awareness in
collaborative software development. We asked software de-
velopers what information they expect to be kept aware of,
and what information they disseminate to others.

2.3 Summarizing Software Artifacts
Our assumption that development activity can automati-

cally be summarized is based on the large body of work that
has introduced summarizers for software artifacts.

Haiduc et al. [26] explored the suitability of various auto-
matic summarization techniques for generating source code
summaries and found that a combination of text summariza-
tion techniques is most appropriate for source code summa-
rization. Moreno et al. [43] automatically summarized Java
classes, focusing on the content and responsibilities of a class
rather than its relationships with other classes. Sridhara et
al. [51] presented a technique that summarizes a method’s
actions, which requires the detection of code fragments im-
plementing high level actions within methods [52]. McBur-
ney and McMillan [38] proposed to include method context
in summaries of Java methods by analyzing how these meth-
ods are invoked. Rastkar et al. [46] introduced an automated
approach that produces a natural language summary which
describes cross-cutting concerns and how they are imple-
mented. Ying and Robillard [58] investigated the feasibility
of summarizing code examples for better presenting such
examples.

Focusing on bug reports, Rastkar et al. [47, 48] investi-
gated whether it is possible to summarize them automat-
ically and effectively so that developers can consult sum-
maries instead of entire bug reports. Czarnecki et al. [10]
posed three hypotheses on what makes a sentence in a bug
report relevant: discussing frequently discussed topics, be-
ing connected to other sentences, and keeping focused on the
bug report’s title and description. Mani et al. [37] proposed
to improve the quality of unsupervised bug report summa-
rization techniques by automatically removing noise, such
as email dumps and chat transcripts.

All of these approaches suggest that it is indeed possible
to automatically summarize software artifacts.

3. RESEARCH METHOD
In this section, we present our research questions and the

methods used for data collection and analysis. In addition,
we show demographic data about the study participants.

3.1 Research Questions
Our research is guided by the following research questions:

RQ1 From a developer’s perspective, what information
should be included in a summary of development ac-
tivity?

RQ2 How would software developers design a metric to
measure the input/output of a software developer?

RQ3 What factors influence how development activity can
be condensed into textual summaries or numbers?

Answers to these questions will shed light on the require-
ments for tool support that automatically condenses devel-
opment activity into words (i.e., textual summaries) or num-
bers (i.e., measures). We make no distinction between indi-
vidual developer activity and project activity in this study

626

since our research questions do not assume a particular or-
ganizational structure for either project or team.

3.2 Data Collection
To answer our research questions, we designed a web-

based survey which was sent to 2,000 GitHub users (156
responses) and we conducted follow-up interviews with ten
of the survey respondents to validate the findings. Table 1
shows the most important questions of the survey where
each horizontal line represents a page break. The complete
survey is available at http://tinyurl.com/DevActivities.

The first three questions ask for demographic informa-
tion from each participant. In addition to the data col-
lected through these questions, we used the data available on
GitHub about each participant in the data analysis. Follow-
ing Fink’s advice on survey design [22], we used specific time
periods and a specific scenario to make the question about
expected content in a summary (question 4) as concrete as
possible. The answer options to question 5 (potential sources
for summary items) were not yet visible when answering the
previous questions to minimize bias and avoid generic an-
swers, such as “All these options sound good”. Since the
survey instrument was static, it was not possible to use the
answers to question 4 as answer options in question 5. To
get participants to think about measuring development ac-
tivity, we asked them to compare their own development
activity in the two months prior to the survey (question 7)
before asking how they would design a metric to automate
such a comparison (question 8). Again, specific options that
we asked about in question 9 were not visible when answer-
ing the earlier questions. The answer options to question 9
were taken from de Lima [13] since his work also explores
different ways of measuring development activity.

To distribute the survey, we downloaded all GitHub user
data on December 6, 2014. Out of a total of 3,271,509 users,
616,501 had published their email address. We further lim-
ited the study population to users that had made at least
one public contribution (push, pull, or issue creation) in the
past twelve months, resulting in 384,144 users. We randomly
sampled 2,000 of these users and asked them to complete
the survey. A draw for corporate gift cards was conducted
to incentivize participation. We received 156 responses (re-
sponse rate 7.8%). After analyzing all responses, we sent
messages to 21 survey respondents asking for a follow-up
interview, ten of which resulted in an interview. The inter-
views were semi-structured, clarifying survey responses and
asking about themes that emerged in our analysis.

3.3 Data Analysis
Considering the exploratory nature of our research ques-

tions, we used methods from Grounded Theory [9] to ana-
lyze the collected data. We designed our study from first
principles since to the best of our knowledge, no tool that
summarizes development activity has been widely adopted
in practice. In three coding sessions of about four hours
each, the first two authors collaboratively performed open
coding of the responses to open-ended questions in the sur-
vey. Answers related to summarizing development activity
and answers related to measuring development activity were
coded separately. Collaborative open coding was done until
saturation was reached. In both cases, this happened after
coding approximately 50 to 60 survey responses. The first
two authors then divided the remaining survey responses

0 1 2 3 4 5+
0

10

20

30

40

projects

p
a
rt

ic
ip

a
n
ts

Figure 1: Number of projects across participants

0 1 2 3 4 5 6 7 8 9 10+
0

20

40

experience (in years)

p
a
rt

ic
ip

a
n
ts

Figure 2: Experience across participants

and coded them separately, consolidating additional codes
in an additional collaborative session. In the end, we ob-
tained 120 codes for the summarization part of the study,
and an additional 119 codes for the measurement part. We
used axial coding to find higher level conceptual themes to
answer our research questions. In the last phase of the re-
search, core themes were formed into statements that we
validated through the follow-up interviews.

3.4 Demographics
In this section, we present basic demographic information

about the participants in our study. Figure 1 shows the dis-
tribution of the number of active projects per participant
as indicated by their survey responses. By far most of the
participants were active in more than one project. Figure 2
shows the distribution of years of development experience
per participant. Half of them had at least five years of de-
velopment experience, and many indicated having ten or
more years of experience.

For the majority of participants, developing software was
part of their job: 131 (85%) of the participants gave a posi-
tive response to the corresponding survey question compared
to 23 (15%) negative responses.1 124 (84%) of the partic-
ipants indicated that they currently develop software in a
team, compared to 24 (16%) solo developers. We calculated
all correlations between the demographic data we collected
using Spearman’s rho. In addition to all GitHub metrics
being correlated with each other, there is a moderate posi-
tive correlation between a participant’s experience and the
number of projects they are involved in. All other corre-
lations are weak (following Dancey and Reidy’s interpreta-
tion [12]).2 In the following sections, we will correlate re-
sponses to the survey questions with this demographic data.

4. FINDINGS
In this section we report our findings on summarization

(Section 4.1) and measurement (Section 4.2) of software de-

1Note that the numbers for different survey questions do not
necessarily add up to 156 since most questions in the survey
were optional.
2The complete data is available in our online appendix at
http://tinyurl.com/DevActivityAppendix.

627

http://tinyurl.com/DevActivities
http://tinyurl.com/DevActivityAppendix

Table 1: Survey questions (excerpt)
1 In how many different software development projects are you currently an active participant? (drop-down)
2 Is developing software part of your job? (yes/no)
3 For how long have you been developing software? (drop-down)
4 Assume it’s Monday morning and you have just returned from a week-long vacation. One of your colleagues is

giving you an update on their development activities last week. What information would you expect to be included
in their summary? (text box)

5 In your opinion, are any of the following items important in summaries of what a developer did last week?
- Names of methods added by the developer, Commit messages by the developer, Titles of issues closed by the
developer, Titles of issues opened by the developer, Titles of issues commented on by the developer, Source
code comments added by the developer (5-point Likert scale for each option)

6 What other information sources might be useful to consider for such a summary? (text box)
7 In terms of input/output, how would you compare your development activity in November to that in October?

- I had more/better development activity in October
- I had more/better development activity in November
- October and November were similar in terms of development activity for me

8 How would you design metrics to automatically measure the input/output of a software developer in a given
month? Why? (text box)

9 In your opinion, are any of the following metrics suited to measure input/output of a developer?
- Lines of code, Number of bugs fixed, Complexity of code added or modified, Low number of bugs introduced
(5-point Likert scale for each option)

10 What other aspects are important to consider when assessing input/output of a developer? (text box)
11 Do you currently develop software in a team? (yes/no)

velopment activity. For each code that emerged in the qual-
itative analysis, we indicate how many participants men-
tioned the particular theme in superscript. Note that these
numbers only indicate how much evidence the data analysis
yielded for each theme, they do not necessarily indicate the
importance of a theme since we did not explicitly ask all
participants about each theme specifically.

4.1 Summarizing Development Activity
Our findings related to the summarization of development

activity can be divided into findings on primary artifacts, ex-
pected and unexpected events, coordination, and secondary
artifacts. In addition, we describe the factors that influence
what information should be included in a summary.

4.1.1 Primary Artifacts
The importance of being updated on how different arti-

facts move through the development cycle was a recurrent
theme among the participants. In our analysis, we observed
a difference between primary artifacts(98)—those that move
through a development cycle—and secondary artifacts(67).
We summarize our findings regarding secondary artifacts
in Section 4.1.5. Among the primary artifacts, projects(46)

play an important role, as P83’s request of what should be
in a summary shows: “Any projects that were completed and
started”. Within these projects, information on development
tasks(46) is essential, as described by P141: “Task state tran-
sition history – which tasks were taken, which were done,
which were tested”. Similarly, P27 described the importance
of features(33): “I would expect to include a description of
the new feature, how the new feature impacts the current
work flow”. Other primary artifacts that were mentioned
included documentation(12), modules(6), and user stories(6),
as detailed by P20: “I’d like to know how many stories moved
through the development cycle”.

4.1.2 Expected
In this section, we discuss in more detail the informa-

tion that developers need about the process(140) that these

Table 2: High-level codes that emerged for process
expect. 117 unexpect. 121 coord. 69
status 93 changes 72 people 29
planning 53 bugs 65 communic. 27
time 29 difficulties 32 awareness 24
goal 18 blocked 21 integration 9

justification 15 releases 5
changes 4
strategy 2
responsib. 1

primary artifacts follow. Table 2 shows the higher-level
themes that emerged for process in our study. Expected(117)

events describe status updates that are generally not sur-
prising to the consumer of the summary (i.e., some pri-
mary artifact is following the development cycle as planned),

whereas unexpected(121) events are unforeseen. We first
focus on the expected updates, where updates on the
status(93) play a central role as P40 explained: “I would
report a status report of activities, what was done, what
state, in which branch, which [is] the purpose of the
activity”. Among the possible status updates, partici-
pants mentioned finished(30), in progress(18), changed(17),
added(16), planned(11), deployed(6), removed(6), delivered(2),
and reviewed(2). P142 gave an example of what such a sum-
mary would look like: “I finished story XXX. When I was
working on it I found Y problem. In order to fix it I cre-
ated and scheduled story Z. In addition we had 10 min of
unscheduled downtime [due] to a bad deploy”.

While such summaries should contain some detail(16), for
example as expressed by P63: “Functionality changes with
point form details with description and location of changes”,
they should mostly be high level(15), as this quote from P121
shows: “List of high level features and explanation of how
much progress was made on any of them”. Balancing these
two ends of the spectrum is one of the challenges in summa-
rizing development activity. When deciding what informa-
tion to include in a summary, priority(6) and severity(1) were

628

mentioned as criteria. In addition, the content of a summary
depends on other communication channels that developers
have already used, as this example from P32 shows: “Well,
first of all, I would know medium and low priority errors
on production environment of the current projects (if a high
priority error occurs we call us via phone)”.

Another crucial aspect when summarizing development
activity is planning(53), mostly for the time frame of a
week(31) or a day(4), and often based on priorities(10), as
indicated by P10: “What to focus on for the coming week,
based on business priorities”. Long-term planning often in-
volves new projects(2) or the project budget(1).

Status updates usually involve a time(29) aspect, as this
quote from P156 shows: “If we are on time and if we need
more time to finish the job”. Another example was given
by P99: “I’m very OC when it comes to timelines/deadlines
so I think I would say everything is right on track”. This
focus on deadlines or milestones(12) was confirmed by P123:
“How far the development has come (what milestones [have]
been reached and/or set up)”. Time is imperative in terms of

how much time has been spent(7) and in terms of how much
time is required(7), as indicated by P144: “Can we keep the
deadline with the current status?”.

Other themes that emerged from the analysis include up-
dates on goals(18), in particular as they are related to busi-
ness concerns(4). These findings are unsurprising given the
ability of commercial tools such as Rally or Rational Team
Concert to monitor how artifacts move through the devel-
opment cycle and to send state changes to team members.
After describing the expected events that developers want
to see in a summary of development activity, in the next sec-
tion, we focus on the unexpected events that emerged from
the data we collected.

4.1.3 Unexpected
Developers need to know about unexpected(121) events

that happened in their projects. For example, this is the
ideal summary envisioned by P49: “Work log, what func-
tionality [has] been implemented/tested. What were the chal-
lenges. Anything out of the ordinary”. P57’s version is sim-
ilar: “What we have to do, what has been done while I was
away, is everything going as expected?, something strange
happened (i.e. the client complains about something or we
did a big mistake), some critical decision has been chosen?,
some architectural decisions had been chosen?”. Another
example came from P111: “I would expect a description of
any drastic changes to the codebase, what major tasks were
completed, if any responsibilities were re-distributed, if any
short-term goals were changed and in particular if anything
that was once estimated as not-difficult turned out to be more
difficult than expected”. P60 also mentioned unexpected is-
sues: “This is what I got done, since you left. This issue
came up, that we did not expect. Now it’s going to take
longer/shorter” and P121 talked about unusual problems:
“Description of the features they worked on and any unusual
problems/antipatterns they encountered”. In this section, we
explain in more detail what information about unexpected
events software developers would like to see in a summary
of software development activity.

Many of the unexpected items that participants men-
tioned were unexpected changes(72). For example, changes
to the requirements(13) play an essential role, as P78 ex-
plained: “I’d expect them to start by going over any changes

to the spec, features completed, and major bug closures and
openings”. Unexpected events can be related to version
control(13), in particular with regard to branches(9), such
as merging(4) or unmerging(1), as P133 described: “I would
include in my summary the latest commits as well as what
I have unmerged on my working branch”. In addition, the
themes of new(1), active(1), and closed(1) branches emerged
from our analysis.

Other changes that play a crucial role are changes to an
API(10), as P61 explained: “API changes are key, much
more than documentation (so comments, commit messages

and whatnot) in my opinion”. New dependencies(6) are an-
other important item, as described by P144: “Is there any
new 3rd party dependency that is added or removed”. Devel-
opers want to be informed about changes to the design(6), as
stated by P138: “Business level documents change logs. If
[there] are tracked changes to requirements and design doc-

uments [that] would be useful”, and architecture(6), as de-
scribed by P10: “Meetings attended and the outcomes of
those meetings, particularly when large architectural deci-
sions have been made during those meetings”. Changes to
the environment(6) emerged as a theme from the analysis in
terms of the deployment environment(1) (such as “Version
X has been deployed to server Y” as described by P10) and

the development environment(2). For example, P5 described
the relationship between task status and problems in the de-
velopment environment in his example summary: “We had
problems in [the] development environment caused by a third
party API. This made me unable to complete the task I was
working on”.

The criticality(6) of such changes is decisive, as shown
by this example from P71: “I would give details about any
critical event (bugs, major architecture changes, task up-

dates)”, and changes to goals(5) or business priorities are
among the most critical, as P53 described: “The biggest
source of change and uncertainty in software development
is the changing business environment. At my place of work
business priorities and expected features change frequently
enough to make long term technical planning challenging. I
think this difficultly is widely shared in many [businesses]
which conduct software development”. Related to that are
conceptual changes(2) or changes to estimates(2), as indi-
cated by P117: “Revised estimate of time to completion for
outstanding goals/projects”.

Bugs(65) are by definition unexpected, and they play a
crucial role when summarizing development activity, as de-
scribed by P83: “I would want them to know if any (seri-

ous) bugs came up”. Bug fixing(32) is an important activ-
ity to be included in a summary, as shown in this example
summary given by P70: “We’ve seen a new issue on one
of our clusters: XXXX (<ticket number>). Turns out it
was caused by YYYY. I’ve spent 2 days to diagnose and
fix the issue: <code review>. Apart from this I’ve written
a design document on component ZZZZ and started work-
ing on the prototype: <repository>. I’ve also fixed these
three bugs: AAAA, BBBB, CCCC”. The root cause(3) and
solution(15) used when fixing bugs were also mentioned by
participants. In addition to bugs fixed, bugs found(16) or
newly introduced(3) play an important role as shown in these
two descriptions from P22 and P53, respectively: “I usu-
ally give status updates whenever I finish a major part of
my end of the project. Weekly updates would include telling

629

him what he needs to do to use my code, any bugs that I’ve
found, what my next steps are, and a way to look at it work-
ing”, “I would tell him the most significant changes we have
done in development since he left. Also the problems I found
and how I overcame those situations, what I’m doing in this
moment and if I have any problem in this moment”. Bugs
can have been reported(1) by a client, as this example sum-
mary from P95 shows: “Last week, a client reported that
retrospectively adding products to the database causes a fatal
server crash. After investigating the OS, server software,
and database, it turned out that the source of the problem
was invalid validation in the Rails WebAPI. This issue is
now fixed and clients have been informed. However, this fix
might impact our archiving plans as clients may now up-
date the archive retrospectively”. Downtime(1) emerged as
another theme from the analysis, also related to bugs.

Problems or difficulties(32) are an essential part of a sum-
mary on development activity, as shown in this example
from P76: “I’ve been working on this feature [and] bug fix
and have completed this much while encountering these prob-
lems. My next steps are...”. These problems can originate
from mistakes(1), and often lessons are learned when solving
a problem, as P16 described in what he would expect from
a summary: “Short description about what he did (problem
he solved, what he learnt)”.

A common problem in collaborative software development
is that one developer is blocked(21) on another one, as this
hypothetical summary from P9 illustrates: “I am blocked
on Nate for app-22 which requires a ORM module to be
completed before I am able to work on that ticket”. The
workflow(4) plays an necessary role in such a summary, as
underlined by P131: “What I think is more important to do
not to break the workflow: Joe must have the task x, y, z
finished so I can use them or write tests”.

A crucial difference between expected events (cf. previous
section) and unexpected events is that unexpected events

usually require some kind of justification(15). For P22, un-
expected events and their justification are the most critical
part of a meeting: “We cut our developer status meetings
way down, and started stand up meetings focusing on prob-
lems and new findings rather than dead boring status. Only
important point is when something is not on track, going
faster than expected and why”. P144’s idea of a summary
is as follows: “[I] would give a list about the tasks I had
[scheduled] to complete by [now] and provide details about
those which are not yet resolved with the reason why they
are not”.

The last theme that emerged from the analysis as part
of the unexpected events pertains to interesting problems(6)

and interesting solutions(3). This quote by P78 illustrates
the importance of such problems and solutions: “I’d like
them to then describe any odd or novel obstacles they had
to overcome while coding, and whether the solutions to those
obstacles could be used in a wider context in later develop-
ment”.

4.1.4 Coordination
Coordination(69) plays a crucial role in collaborative

software development, and it emerged as a core theme
in the data analysis. Coordination is first of all about
people(29), and participants mentioned developers(12) as
well as customers(11) and users(4) (which may or may not
be the same group of individuals). P4’s example sum-

mary underlines the importance of customers: “I’ve imple-
mented/stubbed these modules (a, b, c, ...) and I found these
problems. [Customer] called/emailed regarding to [feature]
and [problem or suggestion]”. P61 talked about users in
what he expects in a summary: “Generally everything in-
volving users (or dummy users) interacting with the product,
with relative feedback”.

Coordination needs communication(27), which can come
in many different forms. Again quoting P61: “I would begin
by summarizing the work [done] and the status of progress in
the various projects. I’d then proceed to report any impor-
tant communications between me and the clients, the bosses
or other colleagues”. Since communication often happens in
meetings, the information on these meetings(9) is vital as
well, as P41 explained: “The minutes of any development
meetings and a diff file from between now and the previous
week would be all I needed to get up to date”. Feedback(8)

was mentioned by participants as well as requests for help(5)

or offers of help(4), as these examples from P106 and P151
show: “If they are having any problems that they need help
with”, “A brief view of the issues they believe I can help to
solve quickly”. Some issues should be mentioned in sum-
maries because they require discussion(3), as shown by P19’s
quote: “For example, last week, I would have said that I
have about 3 projects ready to be upgraded; I sent images
(screenshots) of new ideas, and restated issues that require
discussion”.

One significant aspect of coordination in software devel-
opment is awareness(24), as shown by what P42 expects in
a summary: “Any caveats in the design or implementation
that others should be aware of”. Developers want to be kept
aware of refactorings(9), as shown in this example summary
by P145: “I have completed a major refactoring of a Word-
press plugin, and the plugin is now being tested in a sand-
box prior to rollout”. Similar items that are necessary to
communicate so that developers are aware of them include
reusable components(2), optimizations(2), compatibility(2),
and workload(1).

Coordination is paramount during integration(9), as P22
explained: “I would ask what it will take to provide me with
integration points I foresee I will be needing”. Coordination
is required about releases(5), when changes are needed(4),
or when responsibilities are (re-)distributed(1). Finally, the

themes of strategy(2) and philosophy(1) emerged as being
important in summaries of development activity.

4.1.5 Secondary Artifacts
Summaries do not stand on their own, but they are of-

ten supported by and related to secondary artifacts(67). As
opposed to the primary artifacts described earlier in this sec-
tion, secondary artifacts do not go through a development
cycle and are either fine-grained artifacts that do not change
status (such as a commit) or they present a view on data
available in a repository (such as a burndown chart).

Artifacts related to testing(31) play a central role as
secondary artifacts in summaries of development activ-
ity, in particular related to coverage(3) and outcomes(1).
Commits(21) are relevant as well, as P71 described: “Com-
mit tree is very important when working with large teams”.
However, commits might not be high-level enough to always
be useful in a summary, as P20 indicated: “I’d also look at
the git history for an overview of merged feature branches.
I wouldn’t look through each commit, but rather view the

630

Table 3: Rating of summary sources
mean

method names 2.8767
commit messages 3.6759
issues closed 4.0759
issues opened 4.0342
issues commented 3.2966
code comments 2.9795

merges to get an idea of time/size of each feature”. Other

artifacts include comments(10), code reviews(8), emails(7),
pull requests(4), and meeting notes(6). P93 thought that
summaries could improve meetings: “Anything that amplifies
signal/noise ratio of daily standups (1. What has been ac-
complished since the last meeting? 2. What will be done be-
fore the next meeting? 3. What obstacles are in the way?)”.

Secondary artifacts further include data from workflow
management tools(4), working examples(3), screenshots(1),
burndown charts(2), wikis(2), blogs(2), metrics(2), and
patches(2). P98 detailed the role of patches: “If any patches
were contributed by volunteers or non-regular developers it is
useful to know who worked on them”. Finally, cards(2) were
mentioned, for example by P97: “I want to know the ones
he did, the ones he didn’t, and I’ll check if this makes him
on or out his schedule”.

4.1.6 Factors Influencing Summary Content
After detailing the content that developers expect when

they are presented with a summary of development activ-
ity, in this section, we investigate what factors influence the
content that should be considered. We use the answers to
question 5 in the survey (cf. Table 1) as well as the follow-
up interviews to explore this question. Table 3 shows how
the survey participants rated different potential summary
sources. The highest ratings on a 5-point Likert scale (1 =
not important at all, 5 = very important) were given to issue
titles of opened and closed issues. At the other end of the
spectrum, code comments and the names of methods were
rated the lowest.

Several survey participants explained what their answers
depended on. For example, P78 and P115 mentioned the
quality of commit messages and comments as a factor:
“Looking through commit logs can also be extremely useful,
as long as the commit messages are actually descriptive”, “If
these are good commit messages, they will provide a good
overview of the progress made, most comments would be re-
dundant, but some could be very important”. P52 pointed
out that answers depend on the nature of the project: “My
answers assume a UX project. If we were building an API,
method names and source comments would go up in impor-
tance”. The management style of a project is influential, as
indicated by P3 in the follow-up interview: “[In] theory, this
sort of automatic summarization could probably be applied to
almost all of the projects I’ve ever worked on, especially at
the beginning of my career, many of my managers were very
set in their ways and wary of new approaches”. In addition,
the stage at which a project is determines what informa-
tion is significant when summarizing development activity,
as P52 explained in the follow-up interview: “For example,
if we’re in the early/planning phases of a project, I expect
developer status to mostly be ‘prototyping X technology’ or
‘ramping on Y framework’ or similar. If I heard a developer

Table 5: Summary sources and experience
source experience mean
method names up to 5 years 3.1053

6 or more years 2.6286
code comments up to 5 years 3.2632

6 or more years 2.6714

Table 6: Summary sources and prog. languages
summary source prog. language mean
code comments C 3.5789

no C 2.8898

say they were implementing a feature in that context, that
would stand out and I’d want to know more. On the other
end of the project, towards the end, a status of ‘ramping’
would be the stand-out requiring more investigation”.

Table 4 explores this further by showing the correlations
between demographic data of the survey participants and
their answers regarding potential summary sources (Spear-
man’s rho). None of the correlations are statistically sig-
nificant after adjusting the p-values using a Bonferroni cor-
rection [5].3 We explored the role of experience in more
detail. Table 5 shows the mean scores assigned to the im-
portance of method names and code comments, separately
for participants with up to five years development experience
and participants with at least six years development expe-
rience.4 The differences between these groups are statisti-
cally significant (Mann-Whitney-Wilcoxon test, p < 0.01).
We hypothesize that these differences can be explained by
the diversity of activities that are performed by more ex-
perienced developers. While junior developers might only
work on well-defined tasks involving few artifacts, the diver-
sity of the work carried out by senior developers makes it
more difficult to summarize their work by simply consider-
ing method names, code comments, or issue titles. Future
work will have to be conducted to explore this hypothesis.

We also analyzed the differences in answers as they re-
late to the programming languages that participants use
on GitHub for each of the nine most used programming
languages among our participants (JavaScript, CSS, Shell,
Java, Python, Ruby, PHP, C, C++). For each participant,
we obtained the three languages that they used the most
on GitHub. The only significant difference is related to the
role of code comments, see Table 6. Participants using C
rated the importance of code comments significantly higher
than participants who did not use C. We hypothesize that
this might be related to the projects that developers under-
take in different languages. C might generally be used for
more complex tasks which requires more meaningful code
comments. Future work will have to be conducted to under-
stand the reasons for this difference. We conclude that sev-
eral factors influence how software development activity can
be summarized, ranging from programming languages and
development experience to the current stage of a project.

4.2 Measuring Development Activity
In this section, we explore the themes that emerged from

the analysis regarding the measuring of development activ-

3Correlations between summary sources and the GitHub
metrics of the participants are available in our online ap-
pendix at http://tinyurl.com/DevActivityAppendix.
4We chose six years as threshold for “experienced” since it
best divides our participants into two groups of equal size.

631

http://tinyurl.com/DevActivityAppendix

Table 4: Correlations between demographic data and potential summary sources
method names commit messages issues closed issues opened issues commented code comments

projects -0.06313 -0.06657 0.08138 0.05441 0.11752 -0.11410
part of job? -0.13512 -0.05443 -0.00371 0.01061 -0.01184 -0.09682
experience -0.25037 -0.08464 0.13085 0.16214 0.14335 -0.25470
team? -0.24130 -0.07087 0.08275 -0.01094 0.00391 -0.10187

ity, namely a set of measures and the fact that many par-
ticipants believed that development activity is impossible to
measure. We also investigate the factors that influence how
development activity can be measured.

4.2.1 Measures
Several themes emerged from the analysis for our second

research question, “How would software developers design a
metric to measure the input/output of a software developer?”

The most prevalent theme is a number of measures(112), that
we divided into objective(85) measures and subjective(65)

measures in the analysis. While the distinction is some-
times blurry, as a general rule we classified a measure as ob-
jective if we believed that tool support could automatically
measure it (e.g., lines of code), and we classified a measure
as subjective if we believed that different individuals would
rate the same development activity differently with regard
to that measure (e.g., impact on user experience). Table 11
shows the themes that emerged from the analysis for objec-
tive and subjective measures of development activity, along
with the number of survey participants that mentioned each
measure in the survey. Among the objective measures, sim-
ple measures that count items such as tasks, commits, or
story points are prevalent, while the subjective measures
are dominated by themes on code quality.

In previous work, Meyer et al. [39] asked software devel-
opers to rate different measures for development activity (in
their work conceptualized as productivity). A crucial differ-
ence between their work and ours is that we did not give
participants a set of answer options, and therefore, the an-
swers to our survey questions are not biased by the presence
of several potential metrics. Instead, our question was open-
ended, which led to the emergence of subjective measures as
well as to many participants voicing their opinion that de-
velopment activity is impossible to measure, as we will show
in the next section.

4.2.2 Impossible to Measure
Considering all the previous work on productivity met-

rics, an important theme that emerged from our work is
that development activity is impossible to measure(43). For
example, P61 explained: “A tool capable of automatically
[measuring] the productivity of a developer should know the
developer, what he’s working on, be aware (semantically) of
the codebase and the age of every part of it, and every inter-
action between developers. I believe that’s pretty impossible
for a fixed program”. P19 elaborated further: “For me, de-
velopment is a craft. Sometimes, when I am in the zone, I
can knock out 2 or three projects. Sometimes, when some-
thing is hard, it will take me much longer to resolve. So
productivity cannot just be measured by a metric. It needs
something more organic”.

Without being prompted about this metric specifically,
participants mentioned that development activity cannot be
measured in lines of code(24), as shown in this example from
P10: “It’s difficult to measure output. Simple quantitative

measures like lines of code don’t convey the difficulty of a
code task. Changing the architecture or doing a conceptual
refactoring may have significant impact but very little evi-
dence on the code base. Other important contributions in-
clude interfacing with users (e.g. customer support), even
if those customers are just other people at our company who
are using the software our team produces”. The focus on
customers(7) and the value created for them was confirmed
by P32: “Well in my main role as analyst/developer one im-
portant aspect [are] the customer and co-team devs relations,
it’s not measurable, but sometimes it’s more important than
metrics, we do systems for people in first place”. Similarly,
the difficulty(6) of a task or conceptual work(1) cannot be
measured in lines of code.

Another theme that emerged from the analysis is that
there is a wide range of development activities(13) which
makes it impossible to measure what developers do with a
simple measure. For example, the context(8) of the work
is essential, as indicated by P41: “I don’t believe there are
any simple metrics for this kind of thing. Anything objec-
tive, like lines of code written, hours logged, tags completed,
bugs squashed, none of them can be judged outside of the
context of the work being done and deciphering the appro-
priate context is something that automated systems are, not
surprisingly, not very good at”. In addition, there is a wide
range of different roles(3) and workflows(1), as P61 explained:
“You should probably start off by dividing the roles, and tak-
ing note of every developer’s role(s). Then you should start
by tracking amount of commits per day, amount of lines per
commit (related to the project, and with that hopefully cap-
turing the role one is acting in that specific commit, assum-
ing the codebase is well structured), amount of interaction
on workflow control”. Finally, the development stage that a
project is at(2) matters, as described by P133: “Measuring
these metrics would change based on the stage of the project
in its development cycle”.

Another problem is that measures can be gamed(11), as
P22 explained in the follow-up interview: “A lot of indica-
tors you want to measure would give a bonus to the employ-
ees when they meet the measures and then they are doing
the wrong thing because they are trying to optimize their
own bonus. [...] I think those kinds of bonus systems are
problematic”. Similarly, P52 described: “Automatic is pretty
challenging here, as developers are the most capable people
on earth to game any system you create”. P120 added: “I
wouldn’t use automatic measurements. They are too easy
to game and don’t reflect the range of useful activities of a
good developer”, and P61 commented: “It’s a method full
of pitfalls though: developers are smart people, so you have
to assume that, if they want, they could exploit the system
pretty easily”. This applies in particular to simple measures
such as number of issues(2) and number of commits(2), as
P44 described: “A poor quality developer may be able to
close more tickets than anyone else but a high quality de-
veloper often closes fewer tickets but of those few, almost

632

Table 7: Rating of activity measures
mean

lines of code 2.1319
bugs fixed 3.5931
complexity 3.4552
few bugs introduced 3.6552

Table 9: Activity measures and experience
measure experience mean
lines of code up to 5 years 2.3243

6 or more years 1.9286
bugs fixed up to 5 years 3.8000

6 or more years 3.3714
complexity up to 5 years 3.6933

6 or more years 3.2000

none get reopened or result in regressions. For these rea-
sons, metrics should seek to track quality as much as they
track quantity”. Other problems with automatic measures
include different artifact sizes(2) and the difference between
activity and output(1).

Interestingly, participants who talked about the difficulty
of measuring development activity generally felt positive
about the idea of summarizing development activity. For ex-
ample, P106 stated: “It’s dangerous to measure some num-
ber & have rankings. Because that can be easily gamed. I
think having summaries of what everyone did is helpful. But
ranking it & assessing it is very difficult/could encourage bad
habits. I think it’s better to provide the information & leave
it up to the reader to interpret the level of output”. Num-
bers might be used to complement text, but not the other
way around, as explained by P3 in the follow-up interview:
“I think that’s probably the better approach: text first, and
maybe add numbers. [...] I spend about 45 minutes every
Friday reviewing git diffs, just to have a clearer picture in
my mind of what happened over the week. [...] The au-
tomatic summary would make it harder to miss something,
and easier to digest”.

4.2.3 Factors Influencing Measurement
To investigate the factors that influence how software de-

velopment activity can be measured, we examined the an-
swers to question 9 in the survey (cf. Table 1). Table 7 shows
how survey participants rated different potential measures.
The highest ratings on a 5-point Likert scale (1 = not well
suited at all, 5 = very well suited) were given to low number
of bugs introduced, number of bugs fixed, and complexity of
code added or modified. Unsurprisingly, the rating for lines
of code was much lower than that for the other measures.

We investigated the correlations between demographic
data and the answers to this question. Table 8 shows the re-
sults. None of the correlations are statistically significant af-
ter adjusting the p-values using a Bonferroni correction.5 As
Table 9 shows, we investigated the role of experience further.
The mean scores assigned to the suitability of three out of
four of these measures differ significantly (Mann-Whitney-
Wilcoxon test, p < 0.01) between participants with up to
five years development experience and participants with at
least six years development experience.

5Correlations between activity measures and the GitHub
metrics of the participants are available in our online ap-
pendix at http://tinyurl.com/DevActivityAppendix.

Table 10: Measures and prog. languages
measure prog. language mean
few bugs introduced JavaScript 3.9194

no JavaScript 3.4578
few bugs introduced CSS 3.9778

no CSS 3.5100
lines of code C 2.7222

no C 2.0476
complexity C 3.8947

no C 3.3889

Table 11: Objective and subjective measures
objective subjective
artifact count 83 code quality 34

tasks/issues 49 documentation 8
closed 27 structure 5
opened 9 resilience 4
complexity 8 legibility 4
reopened rate 5 clarity 4
commented 4 efficiency 4
priority 4 style 3
found 3 design 3
severity 2 adaptability 2

tests 19 scalability 2
coverage 7 maintainability 1

commits 19 few bugs 10
features 17 few crashes 1
story points 11 few changes in review 5
lines of code 8 initiative 5
methods 5 discussions 2
change LOC 4 ideas 1
scrum metrics 4 volunteering 1
pull requests 3 psychological factors 4
stories 3 customer relations 4
comments 2 in company 1
releases 2 outside company 1
reviews 2 customer experience 3

plan fulfilment 22 mentoring 2
estimate/reality 11 usefulness 2
goals 8 number of problems 2
expectation/reality 4 number of solutions 1
deadlines 4 personal growth 1

time spent 20 impact on UX 1
work hours 5 demonstrable results 1

When we investigated the relationship between partici-
pants’ programming languages and their ratings of the dif-
ferent measures, we found four statistically significant dif-
ferences, as Table 10 shows: Participants using JavaScript
and CSS assigned more importance to the measure of few
bugs introduced than those who did not use JavaScript or
CSS, respectively. Lines of code and complexity were seen
as more suitable measures for development activity by par-
ticipants who used C compared to those who did not. We
hypothesize that it is particularly difficult to recover from
bugs in web development (JavaScript and CSS), and that
more complex programs are often written in C. Future work
will have to be conducted to explore these hypotheses.

5. DISCUSSION
We briefly discuss two of the themes that emerged from

our analysis: the interest of developers to learn about unex-

633

http://tinyurl.com/DevActivityAppendix

Table 8: Correlations between demographic data and potential activity measures
lines of code bugs fixed complexity few bugs introduced

projects -0.02350 -0.09885 -0.09097 0.01782
part of job? -0.16585 -0.09295 0.01085 0.02768
experience -0.18585 -0.17702 -0.17434 -0.00852
team? -0.07137 -0.13995 0.00602 -0.02931

pected events and the opinion that development activity is
impossible to measure.

5.1 Unexpected Events
When we validated the theme of unexpected events in

follow-up interviews with participants, we asked them specif-
ically about how such unexpected events could be detected.
Participants referred to the commit history in particular.
For example, P115 elaborated: “Commits that take partic-
ularly long might be interesting. If a developer hasn’t com-
mitted anything in a while, his first commit after a long si-
lence could be particularly interesting, for example, because
it took him a long time to fix a bug. Also, important commits
might have unusual commit messages, for example including
smileys, lots of exclamation marks or something like that.
Basically something indicating that the developer was emo-
tional about that particular commit”. P3 added: “Changes
to files that haven’t been changed in a long time or changes
to a large number of files, a large number of deletions, etc.”.

While there is work on automatically detecting buggy
commits (e.g., [21, 33]), little work has been conducted on
detecting the unusual or unexpected in a commit history.
Visualization of the software process [27], the commit his-
tory [57], or specific commits [11] can help developers spot
unexpected events, but they have not been designed specif-
ically for this purpose.

Based on the findings of this work, we are investigat-
ing ways for automatically detecting unusual or unexpected
events in commit histories and software repositories in gen-
eral. To do so, we need to establish what is “normal” in
a given context, and then identify derivations from the ex-
pected. As our participants pointed out, the wide range of
development activities, project stages, technologies, team
compositions, and individual characteristics make it im-
possible to assume the same normal for all developers or
projects. Approaches for the detection of unexpected events
have to be aligned with the specific situations in which they
will be used. We have recently published a first prototype
for the detection of unusual events in commit histories [36].

5.2 Impossible to Measure?
As many of our participants indicated, development ac-

tivity is impossible to measure, and it might even be dan-
gerous to measure it since measures could lead developers to
game a system rather than work towards the“goodness of the
codebase”, as P10 described it. One of the challenges is the
prevalence of invisible work [53] and articulation work [40]
in software development that cannot be measured in terms
of lines of code, number of commits, or number of issues.

However, our findings suggest that summarizing software
development activity is a promising approach to address
some of these issues. Instead of condensing development ac-
tivity into numbers which can easily be gamed, the idea is to
condense development activity into textual summaries that
provide a richer source of information than numbers. Our
work provides empirical data on the content that such sum-

maries should contain. Expanding on the idea of qualitative
dashboards [1], text can be used to complement numbers
and vice versa.

6. LIMITATIONS
We chose methods from Grounded Theory to answer our

research questions due to the exploratory nature of these
questions. While we achieved saturation when analyzing the
survey responses and validated the core themes in follow-up
interviews, we cannot claim that we recorded all possible
perspectives on these questions among GitHub users.

To distribute the survey, we randomly sampled GitHub
users that had been active within the last year. However, all
individuals who contributed to this study were self-selected
volunteers within this sample. The general population on
GitHub might have different characteristics and opinions.
Thus, we cannot claim that our results generalize to all
GitHub users or to the entire population of developers.

As mentioned before, while we report the amount of evi-
dence for each theme yielded by the data analysis, we can-
not infer the strength or pervasiveness of a theme from
these numbers since we did not explicitly ask all participants
about each theme specifically.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we reported on an empirical study designed

to investigate how software development activity can be con-
densed into textual summaries or numbers, in the opinions
of software developers. We recruited GitHub users to partic-
ipate in a survey and follow-up interviews, and we analyzed
the data using methods from Grounded Theory. We found
that unexpected events are as important as expected events
in summaries of development activity, and that many devel-
opers do not believe in the existence of any good measure
for development activity. In addition, we identified factors
that influence summarization and measurement of develop-
ment activity, including development experience and pro-
gramming languages.

In future work, we plan to design and build the tool sup-
port that the participants in our study envisioned: A devel-
opment activity summarizer that reflects expected and un-
expected events, supported by numbers that are intended to
augment the summaries instead of pitting developers against
each other.

Acknowledgements
We thank the survey and interview participants for their
participation, and the participants of QualiDASE 2015 for
the fruitful discussions on how to best present qualita-
tive research. This work is partially supported by the
National Institute of Science and Technology for Soft-
ware Engineering (INES), CNPq grants 573964/2008-4 and
552645/2011-7, CNPq Jovens Talentos grant 407455/2013-2,
and CAPES/PROAP.

634

8. REFERENCES
[1] O. Baysal, R. Holmes, and M. Godfrey. Developer

dashboards: The need for qualitative analytics. IEEE
Software, 30(4):46–52, 2013.

[2] J. T. Biehl, M. Czerwinski, G. Smith, and G. G.
Robertson. Fastdash: A visual dashboard for fostering
awareness in software teams. In Proc. of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 1313–1322, 2007.

[3] J. D. Blackburn, G. D. Scudder, and L. N.
Van Wassenhove. Improving speed and productivity of
software development: A global survey of software
developers. IEEE Transactions on Software
Engineering, 22(12):875–885, 1996.

[4] B. W. Boehm. Improving software productivity.
Computer, 20(9):43–57, 1987.

[5] C. E. Bonferroni. Teoria statistica delle classi e calcolo
delle probabilita. Libreria internazionale Seeber, 1936.

[6] R. P. Buse and T. Zimmermann. Analytics for
software development. In Proc. of the FSE/SDP
Workshop on Future of Software Engineering
Research, pages 77–80, 2010.

[7] R. P. L. Buse and T. Zimmermann. Information needs
for software development analytics. In Proc. of the
34th International Conference on Software
Engineering, pages 987–996, 2012.

[8] M. Cataldo, J. D. Herbsleb, and K. M. Carley.
Socio-technical congruence: A framework for assessing
the impact of technical and work dependencies on
software development productivity. In Proc. of the 2nd
International Symposium on Empirical Software
Engineering and Measurement, pages 2–11, 2008.

[9] K. Charmaz. Constructing grounded theory. Sage
Publications Inc., 2014.

[10] K. Czarnecki, Z. Malik, and R. Lotufo. Modelling the
hurried bug report reading process to summarize bug
reports. In Proc. of the International Conference on
Software Maintenance, pages 430–439, 2012.

[11] M. D’Ambros, M. Lanza, and R. Robbes. Commit 2.0.
In Proc. of the 1st Workshop on Web 2.0 for Software
Engineering, pages 14–19, 2010.

[12] C. P. Dancey and J. Reidy. Statistics Without Maths
for Psychology: Using SPSS for Windows.
Prentice-Hall, Inc., 2004.

[13] J. R. F. de Lima. Uma abordagem de apoio à gerência
de projetos de software para análise da contribuição
de desenvolvedores, 2014. Universidade Federal do Rio
Grande do Norte.

[14] C. R. B. de Souza, D. Redmiles, and P. Dourish.
Breaking the code, moving between private and public
work in collaborative software development. In
Proc. of the International SIGGROUP Conference on
Supporting Group Work, pages 105–114, 2003.

[15] C. R. B. de Souza and D. F. Redmiles. The awareness
network, to whom should I display my actions? And,
whose actions should I monitor? IEEE Transactions
on Software Engineering, 37(3):325–340, 2011.

[16] T. DeMarco and T. Lister. Programmer performance
and the effects of the workplace. In Proc. of the 8th
International Conference on Software Engineering,
pages 268–272, 1985.

[17] P. Devanbu, S. Karstu, W. Melo, and W. Thomas.

Analytical and empirical evaluation of software reuse
metrics. In Proc. of the 18th International Conference
on Software Engineering, pages 189–199, 1996.

[18] P. Dourish and V. Bellotti. Awareness and
coordination in shared workspaces. In Proc. of the
Conference on Computer-supported Cooperative Work,
pages 107–114, 1992.

[19] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr.
Seesoft-a tool for visualizing line oriented software
statistics. IEEE Transactions on Software
Engineering, 18(11):957–968, 1992.

[20] J. B. Ellis, S. Wahid, C. Danis, and W. A. Kellogg.
Task and social visualization in software development:
Evaluation of a prototype. In Proc. of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 577–586, 2007.

[21] J. Eyolfson, L. Tan, and P. Lam. Do time of day and
developer experience affect commit bugginess? In
Proc. of the 8th Working Conference on Mining
Software Repositories, pages 153–162, 2011.

[22] A. Fink. How to Ask Survey Questions. Sage
Publications Inc., 1995.

[23] T. Fritz and G. C. Murphy. Determining relevancy:
How software developers determine relevant
information in feeds. In Proc. of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 1827–1830, 2011.

[24] J. Froehlich and P. Dourish. Unifying artifacts and
activities in a visual tool for distributed software
development teams. In Proc. of the 26th International
Conference on Software Engineering, pages 387–396,
2004.

[25] C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
Proc. of the Conference on Computer Supported
Cooperative Work, pages 72–81, 2004.

[26] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques
for summarizing source code. In Proc. of the 17th
Working Conference on Reverse Engineering, pages
35–44, 2010.

[27] A. Hindle, M. W. Godfrey, and R. C. Holt. Software
process recovery using recovered unified process views.
In Proc. of the International Conference on Software
Maintenance, pages 1–10, 2010.

[28] H. Hulkko and P. Abrahamsson. A multiple case study
on the impact of pair programming on product
quality. In Proc. of the 27th International Conference
on Software Engineering, pages 495–504, 2005.

[29] M. R. Jakobsen, R. Fernandez, M. Czerwinski,
K. Inkpen, O. Kulyk, and G. G. Robertson.
WIPDash: Work item and people dashboard for
software development teams. In Proc. of the 12th
International Conference on Human-Computer
Interaction: Part II, pages 791–804, 2009.

[30] C. Jones. Software metrics: Good, bad and missing.
Computer, 27(9):98–100, 1994.

[31] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In Proc. of the 14th
International Symposium on Foundations of Software
Engineering, pages 1–11, 2006.

[32] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook,

635

A. Kotov, J. Lewis, D. P. Oliva, T. Sheard, I. Smith,
and L. Walton. A software engineering experiment in
software component generation. In Proc. of the 18th
International Conference on Software Engineering,
pages 542–552, 1996.

[33] S. Kim, E. J. Whitehead, Jr., and Y. Zhang.
Classifying software changes: Clean or buggy? IEEE
Transactions on Software Engineering, 34(2):181–196,
2008.

[34] J. A. Lane and D. Zubrow. Intergrating measurement
with improvement: An action-oriented approach:
Experience report. In Proc. of the 19th International
Conference on Software Engineering, pages 380–389,
1997.

[35] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: A study of developer work habits. In
Proc. of the 28th International Conference on
Software Engineering, pages 492–501, 2006.

[36] L. Leite, C. Treude, and F. Figueira Filho.
UEDashboard: Awareness of unusual events in
commit histories. In Proc. of the 10th joint meeting on
Foundations of Software Engineering, 2015. To appear.

[37] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey.
AUSUM: Approach for unsupervised bug report
summarization. In Proc. of the 20th International
Symposium on the Foundations of Software
Engineering, pages 11:1–11:11, 2012.

[38] P. W. McBurney and C. McMillan. Automatic
documentation generation via source code
summarization of method context. In Proc. of the
22nd International Conference on Program
Comprehension, pages 279–290, 2014.

[39] A. N. Meyer, T. Fritz, G. C. Murphy, and
T. Zimmermann. Software developers’ perceptions of
productivity. In Proc. of the 22nd International
Symposium on Foundations of Software Engineering,
pages 19–29, 2014.

[40] P. Mi and W. Scacchi. Modeling articulation work in
software engineering processes. In Proc. of the 1st
International Conference on the Software Process,
pages 188–201, 1991.

[41] C. Michel, E. Lavoué, and L. Pietrac. A dashboard to
regulate project-based learning. In Proc. of the 7th
European Conference on Technology Enhanced
Learning, pages 250–263, 2012.

[42] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[43] L. Moreno, J. Aponte, G. Sridhara, A. Marcus,
L. Pollock, and K. Vijay-Shanker. Automatic
generation of natural language summaries for Java
classes. In Proc. of the 21st International Conference
on Program Comprehension, pages 23–32, 2013.

[44] V. Nguyen, L. Huang, and B. Boehm. An analysis of
trends in productivity and cost drivers over years. In
Proc. of the 7th International Conference on Predictive
Models in Software Engineering, pages 3:1–3:10, 2011.

[45] D. E. Perry, N. Staudenmayer, and L. G. Votta.
People, organizations, and process improvement. IEEE
Software, 11(4):36–45, 1994.

[46] S. Rastkar, G. C. Murphy, and A. W. J. Bradley.

Generating natural language summaries for
crosscutting source code concerns. In Proc. of the 27th
International Conference on Software Maintenance,
pages 103–112, 2011.

[47] S. Rastkar, G. C. Murphy, and G. Murray.
Summarizing software artifacts: A case study of bug
reports. In Proc. of the 32nd International Conference
on Software Engineering - Volume 1, pages 505–514,
2010.

[48] S. Rastkar, G. C. Murphy, and G. Murray. Automatic
summarization of bug reports. IEEE Transactions on
Software Engineering, 40(4):366–380, 2014.

[49] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
Raising awareness among configuration management
workspaces. In Proc. of the 25th International
Conference on Software Engineering, pages 444–454,
2003.

[50] A. Sarma and A. van der Hoek. Towards awareness in
the large. In Proc. of the International Conference on
Global Software Engineering, pages 127–131, 2006.

[51] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for Java methods. In Proc. of the
International Conference on Automated Software
Engineering, pages 43–52, 2010.

[52] G. Sridhara, L. Pollock, and K. Vijay-Shanker.
Automatically detecting and describing high level
actions within methods. In Proc. of the 33rd
International Conference on Software Engineering,
pages 101–110, 2011.

[53] S. L. Star and A. Strauss. Layers of silence, arenas of
voice: The ecology of visible and invisible work.
Computer Supported Cooperative Work, 8(1-2):9–30,
1999.

[54] I. Steinmacher, A. P. Chaves, and M. A. Gerosa.
Awareness support in distributed software
development: A systematic review and mapping of the
literature. Computer Supported Cooperative Work,
22(2-3):113–158, 2013.

[55] H. C. Stuart, L. Dabbish, S. Kiesler, P. Kinnaird, and
R. Kang. Social transparency in networked
information exchange: A theoretical framework. In
Proc. of the Conference on Computer Supported
Cooperative Work, pages 451–460, 2012.

[56] C. Treude and M.-A. Storey. Awareness 2.0: Staying
aware of projects, developers and tasks using
dashboards and feeds. In Proc. of the 32nd
International Conference on Software Engineering -
Volume 1, pages 365–374, 2010.

[57] F. Van Rysselberghe and S. Demeyer. Studying
software evolution information by visualizing the
change history. In Proc. of the 20th International
Conference on Software Maintenance, pages 328–337,
2004.

[58] A. T. T. Ying and M. P. Robillard. Code fragment
summarization. In Proc. of the 9th joint meeting on
Foundations of Software Engineering, pages 655–658,
2013.

[59] M. Zhou and A. Mockus. Developer fluency: Achieving
true mastery in software projects. In Proc. of the 18th
International Symposium on Foundations of Software
Engineering, pages 137–146, 2010.

636

	Introduction and Motivation
	Related Work
	Measuring Developer Productivity
	Awareness in Software Development
	Summarizing Software Artifacts

	Research Method
	Research Questions
	Data Collection
	Data Analysis
	Demographics

	Findings
	Summarizing Development Activity
	Primary Artifacts
	Expected
	Unexpected
	Coordination
	Secondary Artifacts
	Factors Influencing Summary Content

	Measuring Development Activity
	Measures
	Impossible to Measure
	Factors Influencing Measurement

	Discussion
	Unexpected Events
	Impossible to Measure?

	Limitations
	Conclusions and Future Work
	References

