7 research outputs found

    Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    Get PDF
    Chagas disease, caused by Trypanosoma cruzi, is a neglected disease with 20 million people at risk in Latin America. The main control strategies are based on insecticide spraying to eliminate the domestic vectors, the most effective of which is Triatoma infestans. This approach has been very successful in some areas. However, there is a constant risk of recrudescence in once-endemic regions resulting from the re-establishment of T. infestans and the invasion of other triatomine species. To detect low-level infestations of triatomines after insecticide spraying, we have developed a new epidemiological tool based on host responses against salivary antigens of T. infestans. We identified and synthesized a highly immunogenic salivary protein. This protein was used successfully to detect differences in the infestation level of T. infestans of households in Bolivia and the exposure to other triatomine species. The development of such an exposure marker to detect low-level infestation may also be a useful tool for other disease vectors

    Diminution in adenine nucleotide hydrolysis by platelets and serum from rats submitted to Walker 256 tumour

    No full text
    Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5'-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumoor-promoting molecule) in the circulation.2814167118919

    Changes in synaptosomal ectonucleotidase activities in two rat models of temporal lobe epilepsy

    No full text
    Adenosine has been proposed as an endogenous anticonvulsant which can play an important role in seizure initiation, propagation and arrest. Besides the release of adenosine per se, the ectonucleotidase pathway is an important metabolic source of extracellular adenosine. Here we evaluated ATP diphosphohydrolase and 5'-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex at different periods after induction of status epilepticus (SE) by intraperitoneal administration of pilocarpine or kainate. Ectonucleotidase activities from synaptosomes of hippocampus and cerebral cortex of rats were significantly increased at 48-52 h, 7-9 days and 45-50 days after induction of SE by pilocarpine. in relation to kainate model, both hippocampal. enzymes were enhanced at 7-9 days and 45-50 days, but only 5'-nucleotidase remained elevated at 100-110 days after the treatment. in cerebral cortex, an increase in ATP diphosphohydrolase was observed at 48-52 h, 7-9 days and 45-50 days after induction of SE by kainate. However, 5'-nucleotidase activity only presented significant changes at 45-50 and 100-110 days. Our results suggest that SE can induce late and prolonged changes in ectonucleotidases activities. the regulation of the ectonucleotidase pathway may play a modulatory role during the evolution of behavioral and pathophysiological changes related to temporal lobe epilepsy. (C) 2000 Elsevier Science B.V. All rights reserved.Univ Fed Rio Grande do Sul, Dept Bioquim, Inst Ciencias Bas Saude, BR-90035003 Porto Alegre, RS, BrazilEscola Paulista Med, São Paulo, BrazilEscola Paulista Med, São Paulo, BrazilWeb of Scienc

    Enzyme Handbook

    No full text
    corecore