3 research outputs found

    Targeting CDC25 phosphatases : from inhibitors of the enzymatic activity towards inhibitors of the protein-protein interaction between CDC25 and CDK/Cyclin

    No full text
    Les phosphatases CDC25 sont des éléments-clé de la régulation du cycle cellulaire chez les eucaryotes; elles activent par une double déphosphorylation les complexes CDK/cyclines permettant ainsi la progression dans les différentes phases du cycle. Leur sur-expression, observée dans des cancers très fréquents, est corrélée à une forte agressivité des tumeurs et un mauvais pronostic ce qui en fait des cibles d’intérêt en cancérologie. Deux nouvelles séries d’inhibiteurs ont été développées à partir d’une thiazolopyrimidinone (TZP), capable d’inhiber l’activité des CDC25, et préalablement identifiée par l’équipe. La première série a été obtenue par dimérisation de deux noyaux thiazolones conduisant à des inhibiteurs avec des CI50 de l’ordre du micromolaire sur CDC25B plus actifs que les mono-thiazolones, ces composés étant sélectifs vs PTP1B et VHR. De plus, ces dimères semblent interagir avec le site actif et la poche de liaison des inhibiteurs. Une deuxième série d’analogues de thiazolidin-4-one a été obtenue par simplification de la structure TZP. Une réaction à quatre composants, utilisant l’énergie micro-onde, a été développée pour préparer rapidement des inhibiteurs de CDC25B avec des CI50 de l’ordre du micromolaire. Enfin, une approche originale pour inhiber CDC25 en ciblant l’interaction CDC25/CDK-Cycline a débutée. Un crible in silico/in vitro sera réalisé afin d’identifier de petites molécules inhibitrices de cette interaction. Des études préliminaires pour la mise en place d’outils permettant l’évaluation de l’affinité de ces molécules pour le site de reconnaissance de CDK2 ont été engagées.CDC25 phosphatases are key regulators of the cell cycle and its checkpoints. Hence, they are required to dephosphorylate and thus activate the Cdk/Cyclin complexes triggering progression through the different phases. Over-expression of CDC25 has been demonstrated in a large number of human tumors and is often associated with aggressiveness and poor clinical prognosis. CDC25 phosphatases may therefore represent attractive targets for anti-cancer therapy. Starting from a thiazolopyrimidinone (TZP) structure, previously reported as CDC25 inhibitor in our laboratory, two series of new compounds have been developed. Dimerisation of the thiazolone scaffold led to bis-thiazolone derivatives with inhibitory activities in the micromolar range greater than that observed for the mono-thiazolones. Moreover, most of these compounds were selective CDC25 inhibitors. A second scaffold was designed by opening of the pyrimidine ring of the TZP, leading to thiazolidine-4-one derivatives that inhibit CDC25B activities with values of IC50 in the micromolar range. A four-component reaction, using micro-wave irradiation, was developed to rapidly prepare these compounds. Finally, an approach aiming at inhibiting the interactions between phosphatase CDC25 and its substrate CDK2 was engaged. Several virtual chemical libraries will be screened in silico, and the small molecules candidates selected will be assessed for their binding affinity using an in vitro assay, that we sought to develop

    Les phosphates CDC25 constituent-elles des cibles importantes en cancérologie (Des inhibiteurs de l'activité enzymatique vers les inhibiteurs de l'interaction entre CDC25 et leurs substrats CDK-Cycline)

    No full text
    Les phosphatases CDC25 sont des éléments-clé de la régulation du cycle cellulairechez les eucaryotes; elles activent par une double déphosphorylation les complexes CDK/cyclines permettant ainsi la progression dans les différentes phases du cycle. Leur sur-expression, observée dans des cancers très fréquents, est corrélée à une forte agressivité des tumeurs et un mauvais pronostic ce qui en fait des cibles d intérêt en cancérologie. Deux nouvelles séries d inhibiteurs ont été développées à partir d une thiazolopyrimidinone (TZP), capable d inhiber l activité des CDC25, et préalablement identifiée par l équipe. La première série a été obtenue par dimérisation de deux noyaux thiazolonesconduisant à des inhibiteurs avec des CI50 de l ordre du micromolaire sur CDC25B plus actifs que les mono-thiazolones, ces composés étant sélectifs vs PTP1B et VHR. De plus, ces dimères semblent interagir avec le site actif et la poche de liaison des inhibiteurs. Une deuxième série d analogues de thiazolidin-4-one a été obtenue par simplification de la structure TZP. Une réaction à quatre composants, utilisant l énergie micro-onde, a été développée pour préparer rapidement des inhibiteurs de CDC25B avec des CI50 de l ordre du micromolaire. Enfin, une approche originale pour inhiber CDC25 en ciblant l interaction CDC25/CDK-Cycline a débutée. Un crible in silico/in vitro sera réalisé afin d identifier de petites molécules inhibitrices de cette interaction. Des études préliminaires pour la mise en place d outils permettant l évaluation de l affinité de ces molécules pour le site de reconnaissance de CDK2 ont été engagées.CDC25 phosphatases are key regulators of the cell cycle and its checkpoints. Hence, they are required to dephosphorylate and thus activate the Cdk/Cyclin complexes triggering progression through the different phases. Over-expression of CDC25 has been demonstrated in a large number of human tumors and is often associated with aggressiveness and poor clinical prognosis. CDC25 phosphatases may therefore represent attractive targets for anti-cancer therapy. Starting from a thiazolopyrimidinone (TZP) structure, previously reported as CDC25 inhibitor in our laboratory, two series of new compounds have been developed. Dimerisation of the thiazolone scaffold led to bis-thiazolone derivatives with inhibitory activities in the micromolar range greater than that observed for the mono-thiazolones. Moreover, most of these compounds were selective CDC25 inhibitors. A second scaffold was designed by opening of the pyrimidine ring of the TZP, leading to thiazolidine-4-one derivatives that inhibit CDC25B activities with values of IC50 in the micromolar range. A four-component reaction, using micro-wave irradiation, was developed to rapidly prepare these compounds. Finally, an approach aiming at inhibiting the interactions between phosphatase CDC25 and its substrate CDK2 was engaged. Several virtual chemical libraries will be screened in silico, and the small molecules candidates selected will be assessed for their binding affinity using an in vitro assay, that we sought to develop.PARIS5-Bibliotheque electronique (751069902) / SudocPARIS-BIUM-Bib. électronique (751069903) / SudocSudocFranceF

    In Vitro and In Vivo Analysis of the Gram-Negative Bacteria-Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells.

    No full text
    International audienceMucosal-associated invariant T (MAIT) cells recognize microbial compounds presented by the MHC-related 1 (MR1) protein. Although riboflavin precursor derivatives from Gram-positive bacteria have been characterized, some level of ligand heterogeneity has been suggested through the analysis of the MAIT cell TCR repertoire in humans and differential reactivity of human MAIT cell clones according to the bacteria. In this study, using Gram-negative bacteria mutated for the riboflavin biosynthetic pathway, we show a strict correlation between the ability to synthesize the 5-amino-ribityl-uracil riboflavin precursor and to activate polyclonal and quasi-monoclonal mouse MAIT cells. To our knowledge, we show for the first time that the semipurified bacterial fraction and the synthetic ligand activate murine MAIT cells in vitro and in vivo. We describe new MR1 ligands that do not activate MAIT cells but compete with bacterial and synthetic compounds activating MAIT cells, providing the capacity to modulate MAIT cell activation. Through competition experiments, we show that the most active synthetic MAIT cell ligand displays the same functional avidity for MR1 as does the microbial compound. Altogether, these results show that most, if not all, MAIT cell ligands found in Escherichia coli are related to the riboflavin biosynthetic pathway and display very limited heterogeneity
    corecore