42 research outputs found

    Effects of waterborne ZnO nanoparticles and Zn2+ions on the gills of rainbow trout (Oncorhynchus mykiss): Bioaccumulation, histopathological and ultrastructural changes

    Get PDF
    The aim of this study was comparing the toxic effects of zinc oxide nanoparticles (ZnO NPs) versus zinc ions (Zn2+) at a high non-lethal (500μg/L) and a low environmental relevant (0.05μg/L) concentrations on gills of rainbow trout (Oncorhynchus mykiss) following 14 days of waterborne exposure. Structural alterations, histopathological anomalies, and zinc bioaccumulation were investigated in the gills using field emission scanning electron microscopy (FESEM), hematoxylin and eosin staining (H&E), and graphite furnace atomic absorption spectrophotometry (GFAAS) respectively. Some damages such as shortening and fusion of secondary lamellae, surface epithelium hypertrophy, and hyperplasia of the primary lamellae were observed in the gill tissue. Histopathological alterations of gills were minimum in both 659777250 exposed (control) fish and fish exposed to 0.05μg/L Zn2+. The severity of gill damages were higher in fish exposed to 500μg/L ZnO NPs compared to 500μg/L Zn2+and 0.05μg/L ZnO NPs. The Zn accumulation in the gills was concentration-dependent such that bioaccumulation order was as 500μg/L Zn2+> 500μg/L ZnO NPs � 0.05μg/L Zn2+> 0.05μg/L ZnO NPs> control. In summary, the results of present study showed that although the accumulation capability of Zn2+was higher than ZnO NPs, but NPs cause more structural damages to gills compare to ions. © 2018, Central Fisheries Research Inst. All rights reserved

    Effects of waterborne ZnO nanoparticles and Zn2+ions on the gills of rainbow trout (Oncorhynchus mykiss): Bioaccumulation, histopathological and ultrastructural changes

    Get PDF
    The aim of this study was comparing the toxic effects of zinc oxide nanoparticles (ZnO NPs) versus zinc ions (Zn2+) at a high non-lethal (500μg/L) and a low environmental relevant (0.05μg/L) concentrations on gills of rainbow trout (Oncorhynchus mykiss) following 14 days of waterborne exposure. Structural alterations, histopathological anomalies, and zinc bioaccumulation were investigated in the gills using field emission scanning electron microscopy (FESEM), hematoxylin and eosin staining (H&E), and graphite furnace atomic absorption spectrophotometry (GFAAS) respectively. Some damages such as shortening and fusion of secondary lamellae, surface epithelium hypertrophy, and hyperplasia of the primary lamellae were observed in the gill tissue. Histopathological alterations of gills were minimum in both 659777250 exposed (control) fish and fish exposed to 0.05μg/L Zn2+. The severity of gill damages were higher in fish exposed to 500μg/L ZnO NPs compared to 500μg/L Zn2+and 0.05μg/L ZnO NPs. The Zn accumulation in the gills was concentration-dependent such that bioaccumulation order was as 500μg/L Zn2+> 500μg/L ZnO NPs � 0.05μg/L Zn2+> 0.05μg/L ZnO NPs> control. In summary, the results of present study showed that although the accumulation capability of Zn2+was higher than ZnO NPs, but NPs cause more structural damages to gills compare to ions. © 2018, Central Fisheries Research Inst. All rights reserved

    Targeting Treatment-Resistant Auditory Verbal Hallucinations in Schizophrenia with fMRI-Based Neurofeedback – Exploring Different Cases of Schizophrenia

    Get PDF
    Auditory verbal hallucinations (AVHs) are a hallmark of schizophrenia and can significantly impair patients' emotional, social, and occupational functioning. Despite progress in psychopharmacology, over 25% of schizophrenia patients suffer from treatment-resistant hallucinations. In the search for alternative treatment methods, neurofeedback (NF) emerges as a promising therapy tool. NF based on real-time functional magnetic resonance imaging (rt-fMRI) allows voluntarily change of the activity in a selected brain region - even in patients with schizophrenia. This study explored effects of NF on ongoing AVHs. The selected participants were trained in the self-regulation of activity in the anterior cingulate cortex (ACC), a key monitoring region involved in generation and intensity modulation of AVHs. Using rt-fMRI, three right-handed patients, suffering from schizophrenia and ongoing, treatment-resistant AVHs, learned control over ACC activity on three separate days. The effect of NF training on hallucinations' severity was assessed with the Auditory Vocal Hallucination Rating Scale (AVHRS) and on the affective state - with the Positive and Negative Affect Schedule (PANAS). All patients yielded significant upregulation of the ACC and reported subjective improvement in some aspects of AVHs (AVHRS) such as disturbance and suffering from the voices. In general, mood (PANAS) improved during NF training, though two patients reported worse mood after NF on the third day. ACC and reward system activity during NF learning and specific effects on mood and symptoms varied across the participants. None of them profited from the last training set in the prolonged three-session training. Moreover, individual differences emerged in brain networks activated with NF and in symptom changes, which were related to the patients' symptomatology and disease history. NF based on rt-fMRI seems a promising tool in therapy of AVHs. The patients, who suffered from continuous hallucinations for years, experienced symptom changes that may be attributed to the NF training. In order to assess the effectiveness of NF as a therapeutic method, this effect has to be studied systematically in larger groups; further, long-term effects need to be assessed. Particularly in schizophrenia, future NF studies should take into account the individual differences in reward processing, fatigue, and motivation to develop individualized training protocols

    Brain connectivity changes occurring following cognitive behavioural therapy for psychosis predict long-term recovery

    Get PDF
    Little is known about the psychobiological mechanisms of cognitive behavioural therapy for psychosis (CBTp) and which specific processes are key in predicting favourable long-term outcomes. Following theoretical models of psychosis, this proof-of-concept study investigated whether the long-term recovery path of CBTp completers can be predicted by the neural changes in threatbased social affective processing that occur during CBTp. We followed up 22 participants who had undergone a social affective processing task during functional magnetic resonance imaging along with self-report and clinician-administered symptom measures, before and after receiving CBTp. Monthly ratings of psychotic and affective symptoms were obtained retrospectively across 8 years since receiving CBTp, plus self-reported recovery at final follow-up. We investigated whether these long-term outcomes were predicted by CBTp-led changes in functional connections with dorsal prefrontal cortical and amygdala during the processing of threatening and prosocial facial affect. Although long-term psychotic symptoms were predicted by changes in prefrontal connections during prosocial facial affective processing, long-term affective symptoms were predicted by threat-related amygdalo-inferior parietal lobule connectivity. Greater increases in dorsolateral prefrontal cortex connectivity with amygdala following CBTp also predicted higher subjective ratings of recovery at long-term follow-up. These findings show that reorganisation occurring at the neural level following psychological therapy can predict the subsequent recovery path of people with psychosis across 8 years. This novel methodology shows promise for further studies with larger sample size, which are needed to better examine the sensitivity of psychobiological processes, in comparison to existing clinical measures, in predicting long-term outcomes.Wellcome Trust; Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology & Neuroscience, King’s College London and South London and Maudsley NHS Foundation Trust, U

    Categorization of complex dynamic patterns in the human brain

    No full text
    The ability to categorize actions is critical for interacting in complex environments. Previous studies have examined the neural correlates of categorization using static stimuli. The goal of our study was to investigate the neural substrates that mediate learning of complex movement categories in the human brain. We used novel dynamic patterns that were generated by animation of an artificial skeleton model and presented as point-light displays. We created prototypical stimuli that differed in the spatial arrangement of their segments and their kinematics. Intermediate stimuli between the prototypes were generated by a weighted linear combination of the prototypical trajectories in space-time. We compared fMRI activations when the observers performed a categorization vs. a spatial discrimination task on the same stimuli. In the categorization task, the observers discriminated whether each stimulus belonged to one of four prototypical classes. In the spatial discrimination task, the observers judged whether each stimulus was rotated (or translated) leftwards vs. rightwards. These tasks were matched for difficulty based on the observers? Performance during a practice session. We observed significantly stronger fMRI activations for the categorization than the spatial discrimination tasks in the dorsal, inferior parietal and the medial, inferior frontal cortex, consistent with previous findings on the categorization of static stimuli. Interestingly, we also observed activations in visual motion areas (V3a, hMT+/V5), higher-order motion areas in the intraparietal sulcus (VOIPS, POIPS, DIPSM, DIPSA) and parieto-frontal areas (supramarginal gyrus, postcentral gyrus, ventral and dorsal premotor cortex) thought to be involved in action observation and imitation. These findings suggest that categorization of complex dynamic patterns may modulate processing in areas implicated in the analysis of visual motion and actions

    Categorization of complex dynamic patterns in the human brain

    No full text
    The ability to categorize actions is critical for interacting in complex environments. Previous studies have examined the neural correlates of categorization using static stimuli. The goal of our study was to investigate the neural substrates that mediate learning of complex movement categories in the human brain. We used novel dynamic patterns that were generated by animation of an artificial skeleton model and presented as point-light displays. We created prototypical stimuli that differed in the spatial arrangement of their segments and their kinematics. Intermediate stimuli between the prototypes were generated by a weighted linear combination of the prototypical trajectories in space-time. We compared fMRI activations when the observers performed a categorization vs. a spatial discrimination task on the same stimuli. In the categorization task, the observers discriminated whether each stimulus belonged to one of four prototypical classes. In the spatial discrimination task, the observers judged whether each stimulus was rotated (or translated) leftwards vs. rightwards. These tasks were matched for difficulty based on the observers? Performance during a practice session. We observed significantly stronger fMRI activations for the categorization than the spatial discrimination tasks in the dorsal, inferior parietal and the medial, inferior frontal cortex, consistent with previous findings on the categorization of static stimuli. Interestingly, we also observed activations in visual motion areas (V3a, hMT+/V5), higher-order motion areas in the intraparietal sulcus (VOIPS, POIPS, DIPSM, DIPSA) and parieto-frontal areas (supramarginal gyrus, postcentral gyrus, ventral and dorsal premotor cortex) thought to be involved in action observation and imitation. These findings suggest that categorization of complex dynamic patterns may modulate processing in areas implicated in the analysis of visual motion and actions

    DYNAMIC ANALYSIS OF SATELLITE SEPARATION USING RETRO ROCKET FOR INJECTION WITH INITIAL ROTATION IN ORBIT

    No full text
    This paper presents the new method for separation of payload from launch vehicle. In this method, in addition to helical compression spring mechanism used in usual separation systems, two retro rockets mounted symmetrically on the second stage were used. To protect on-going stage from disturbance, the retro rocket performance was initiated a few millisecond after payload separation. Linear and rotational equations were solved using MATLAB and the numerical analysis was done by ADAMS. The comparison among analytic, numeric and test results showed that this method could be used as an appropriate tool for payload separating from spent body

    Evaluation of anti-melanogenic activity of Ziziphus jujuba fruits obtained by two different extraction methods

    No full text
    Abstract Background and objectives: Dried pulps and peels of Ziziphus jujuba fruits are commonly applied as food because of their high nutritional value. It has been widely used in traditional medicine as laxative, tonic, wound healing agent and appetizer. The aim of this study was to evaluate the antimelanogenic effects of Z. jujuba fruit. Methods: Fruit extracts were obtained by two different extraction methods, percolation (cold extraction) and soxhlet (hot extraction) using methanol 80% as the solvent. The total phenolic and flavonoid contents, DPPH radical scavenging activity and antityrosinase capacity of the MeOH extracts from Z. jujuba fruits were evaluated in vitro. In addition, the effects of fruit extracts on the melanin content and cytotoxicity on human melanoma SKMEL-3 cells were determined after 72 hours. Results: The amount of total phenolic and flavonoid contents of the cold extract were found higher in comparison to the hot extract. Moreover, the antioxidant (SC 50 =1.40 mg/mL) and anti-tyrosinase activities (IC 50 = 0.54 mg/mL) of the cold extract were significantly stronger than the hot extract. At the dose of 500 μg/mL, the cold extract showed weaker toxicity to the melanoma cells than the hot extract. Melanin content of the cold extract was reduced to 30% at this concentration, while the hot extract had no inhibitory effect on melanin formation. Conclusion: The results showed that the percolation method was more suitable for extraction of the (poly) phenolics from Z. jujuba fruits. In addition, the results of tyrosinase activity and melanin content assays suggested that the cold extract of Z. jujuba fruit can be considered as a dermatological whitening agent in skin care products
    corecore