22,585 research outputs found

    Magnetism and superconductivity in Eu0.2Sr0.8(Fe0.86Co0.14)2As2 probed by 75As NMR

    Full text link
    We report bulk superconductivity (SC) in Eu0.2_{0.2}Sr0.8_{0.8}(Fe0.86_{0.86}Co0.14_{0.14})2_{2}As2_{2} single crystals by means of electrical resistivity, magnetic susceptibility, and specific heat measurements with TTc_{\mathrm{c}} ≃\simeq 20 K with an antiferromagnetic (AFM) ordering of Eu2+^{2+} moments at TTN_{\mathrm{N}} ≃\simeq 2.0 K in zero field. 75^{75}As NMR experiments have been performed in the two external field directions (H∥ab\|ab) and (H∥c\|c). 75^{75}As-NMR spectra are analyzed in terms of first order quadrupolar interaction. Spin-lattice relaxation rates (1/T1T_{1}) follow a T3T^{3} law in the temperature range 4.2-15 K. There is no signature of Hebel-Slichter coherence peak just below the SC transition indicating a non s-wave or s±_{\pm} type of superconductivity. The increase of 1/T1TT_{1}T with lowering the temperature in the range 160-18 K following CT+θ\frac{C}{T+\theta} law reflecting 2D AFM spin fluctuations

    Critical current of a superconductor measured via injection of spin polarized carriers

    Full text link
    In this paper we report a direct evidence of the suppression of critical current due to pair-breaking in a superconducting micro-bridge when the measurement is carried out by injecting spin polarised carriers instead of normal electrons. A thin layer of La0.7Ca0.3MnO3 was used as the source of spin polarised carriers. The micro-bridge was formed on the DyBa2Cu3O7-d thin film by photo-lithographic techniques. The design of our spin-injection device allowed us to inject spin-polarised carriers from the La0.7Ca0.3MnO3 layer directly to the DyBa2Cu3O7- d micro-bridge (without any insulating buffer layer) making it possible to measure the critical current when polarised electrons alone are injected into the superconductor. Our results confirm the role of polarised carriers in breaking the Cooper pairs in the superconductor.Comment: 8 pages, 4 figure

    Identification of the slow E3 transition 136mCs -> 136Cs with conversion electrons

    Full text link
    We performed at ISOLDE the spectroscopy of the decay of the 8- isomer in 136Cs by and conversion-electron detection. For the first time the excitation energy of the isomer and the multipolarity of its decay have been measured. The half-life of the isomeric state was remeasured to T1/2 = 17.5(2) s. This isomer decays via a very slow 518 keV E3 transition to the ground state. In addition to this, a much weaker decay branch via a 413 keV M4 and a subsequent 105 keV E2 transition has been found. Thus we have found a new level at 105 keV with spin 4+ between the isomeric and the ground state. The results are discussed in comparison to shell model calculations.Comment: Phys. Rev. C accepted for publicatio

    Shear-induced rigidity of frictional particles: Analysis of emergent order in stress space

    Full text link
    Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a non-uniform density pattern, which results from either minimizing the energy cost or maximizing the entropy or both. In this work, we focus on a class of systems, where this paradigm is challenged. We show that shear-driven jamming in dry granular materials is a collective process controlled solely by the constraints of mechanical equilibrium. We argue that these constraints lead to a broken translational symmetry in a dual space that encodes the statistics of contact forces and the topology of the contact network. The shear-jamming transition is marked by the appearance of this broken symmetry. We extend our earlier work, by comparing and contrasting real space measures of rheology with those obtained from the dual space. We investigate the structure and behavior of the dual space as the system evolves through the rigidity transition in two different shear protocols. We analyze the robustness of the shear-jamming scenario with respect to protocol and packing fraction, and demonstrate that it is possible to define a protocol-independent order parameter in this dual space, which signals the onset of rigidity.Comment: 14 pages, 17 figure

    Generalized tt-jj Model

    Full text link
    By parameterizing the t-j model we present a new electron correlation model with one free parameter for high-temperature superconductivity. This model is of SUq(1,2)SU_{q}(1,2) symmetry. The energy spectrums are shown to be modulated by the free parameter in the model. The solution and symmetric structures of the Hilbert space, as well as the Bethe ansatz approach are discussed for special cases.Comment: 13 page, Latex, to appear in J. Phys.
    • …
    corecore