35 research outputs found

    Induction of interferon-stimulated genes by Simian virus 40 T antigens

    Get PDF
    AbstractSimian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAgwt) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAgwt and a truncated TAg (TAgN136), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAgwt including many interferon-stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAgwt. Our genetic studies using several TAg-mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs

    Differential activity of interferon-α8 promoter is regulated by Oct-1 and a SNP that dictates prognosis of glioma

    Get PDF
    We have previously reported that the single nucleotide polymorphism (SNP) rs12553612 in IFNA8 is associated with better overall survival of glioma patients with the AA-genotype compared with patients with the AC-genotype. As rs12553612 is located in the IFNA8 promoter, we hypothesized that the A-allele allows for an enhanced IFNA8 promoter activity compared with the C-allele. Reporter assays in the human monocyte derived THP-1 cell line demonstrated a superior promoter activity of the A-allele compared with the C-allele. Electrophoretic mobility shift assays (EMSA) further demonstrated that the A-genotype specifically binds to more nuclear proteins than the C-genotype, including the transcription factor Oct-1. Further, co-transfection of plasmids encoding Oct-1 and the reporter constructs revealed that Oct-1 enhanced the promoter activity with the A- but not the C-allele. Taken together, our data demonstrate that the A-allele in the rs12553612 SNP, which is associated with better glioma patient survival, allows for IFNA8 transcription by allowing for Oct-1 binding, which is absent in patients with C allele, and suggests a molecular mechanism of IFNA8 mediated immune-surveillance of glioma progression

    STING contributes to anti-glioma immunity via triggering type-I IFN signals in the tumor microenvironment

    Get PDF
    While type-I interferons (IFNs) play critical roles in antiviral and antitumor activity, it remains to be elucidated how type-I IFNs are produced in sterile conditions of the tumor microenvironment and directly impacts tumor-infiltrating immune cells. We report that both human and de novo mouse gliomas show increased expression of type-I IFN messages, and in mice, CD11b+ brain-infiltrating leukocytes (BILs) are the main source of type-I IFNs that is induced partially in a STING (stimulator of IFN genes)-dependent manner. Consequently, glioma-bearing Sting Gt/Gt mice showed shorter survival, and lower expression levels of Ifns compared with wild-type mice. Furthermore, BILs of Sting Gt/Gt mice show increased CD11b+ Gr-1+ immature myeloid suppressor and CD25+ Foxp3+ regulatory T (Treg) cells, while decreased IFN-γ-producing CD8+ T cells. To determine the effects of type-I IFN expression in the glioma microenvironment, we utilized a novel reporter mouse model, in which the type-I IFN signaling induces the Mx1 (IFN-induced GTP-binding protein) promoter-driven Cre recombinase, which turns the expression of loxp-flanked tdTomato off, and turns green fluorescence protein (GFP) expression on, thereby enabling us to monitor the induction and effects of IFN signaling in the glioma microenvironment. CD4+ T cells that received direct type-I IFN signals (i.e., GFP+ cells) demonstrate lesser degrees of regulatory activity based on lower Foxp3 and Tgfb1 expression levels (Figure 1) as well as lesser suppression of CD8+ T cell proliferation (Figure B). IFN-sensed CD8+ T cells exhibit enhanced levels of Th1 markers, Tbx21 and Igfng (Figure C), as well as cytotoxic T-cell activity based on reverse antibody-dependent T-cell-mediated cytotoxicity assay (Figure D). Finally, intratumoral administration of a STING agonist (cyclic diguanylate monophosphate; c-di-GMP) improves the survival of glioma-bearing mice associated with enhanced type-I IFN signaling, Cxcl10 and Ccl5 and T cell migration into the brain. In a combination with subcutaneous OVA peptide-vaccination, c-di-GMP increased OVA-specific cytotoxicity of BILs and prolonged the survival. These data demonstrate significant contributions of STING to antitumor immunity via enhancement of the type-I IFN signaling in the tumor microenvironment, and imply a potential use of STING agonists for development of effective immunotherapy, such as the combination with antigen-specific vaccinations

    Endomembrane targeting of human OAS1 p46 augments antiviral activity

    Get PDF
    Many host RNA sensors are positioned in the cytosol to detect viral RNA during infection. However, most positive-strand RNA viruses replicate within a modified organelle co-opted from intracellular membranes of the endomembrane system, which shields viral products from cellular innate immune sensors. Targeting innate RNA sensors to the endomembrane system may enhance their ability to sense RNA generated by viruses that use these compartments for replication. Here, we reveal that an isoform of oligoadenylate synthetase 1, OAS1 p46, is prenylated and targeted to the endomembrane system. Membrane localization of OAS1 p46 confers enhanced access to viral replication sites and results in increased antiviral activity against a subset of RNA viruses including flaviviruses, picornaviruses, and SARS-CoV-2. Finally, our human genetic analysis shows that the OAS1 splice-site SNP responsible for production of the OAS1 p46 isoform correlates with protection from severe COVID-19. This study highlights the importance of endomembrane targeting for the antiviral specificity of OAS1 and suggests that early control of SARS-CoV-2 replication through OAS1 p46 is an important determinant of COVID-19 severity

    Effect of Fenvalerate, a pyrethroid insecticide on membrane fluidity

    No full text
    Fenvalerate is a commonly used pyrethroid insecticide, used to control a wide range of pests. We have studied its interaction with the membrane using fluorescence polarization and differential scanning calorimetry (DSC) techniques. Fenvalerate was found to decrease the DPH fluorescence polarization value of synaptosomal and microsomal membrane, implicating that it makes the membrane more fluid. At different concentrations of fenvalerate, the activation energy of the probe molecule in the membrane also changes revealed from the change in slope of the Arrhenius plot. At higher concentrations the insecticide slowly saturates the membrane. The effects of fenvalerate on model membrane were also studied with liposomes reconstituted with dipalmitoylphosphatidylcholine (DPPC). Fenvalerate decreased the phase transition temperature (Tm) of DPPC by 1.5 °C at 40 µM concentration, but there was no effect on the cooperativity of the transition as interpreted from the DSC thermogram. From the change in the thermogram profile with fenvalerate it has been interpreted that it localizes in the acyl chain region of the lipid, possibly between C10 and C16 region and weakens the acyl chain packing. Fenvalerate was also found to interact with DPPC liposomes containing cholesterol to fluidize it

    Protective role of STING against gliomagenesis: Rational use of STING agonist in anti-glioma immunotherapy.

    No full text
    We recently reported that STING contributes to antiglioma immunity by triggering type I IFN induction in glioma microenvironment. Moreover, intratumoral administration of STING agonist improved the efficacy of peptide vaccination in a mouse glioma model, suggesting the rational use of STING agonists in the immunotherapy of brain tumor

    Protective role of STING against gliomagenesis: Rational use of STING agonist in anti-glioma immunotherapy

    No full text
    We recently reported that STING contributes to antiglioma immunity by triggering type I IFN induction in glioma microenvironment. Moreover, intratumoral administration of STING agonist improved the efficacy of peptide vaccination in a mouse glioma model, suggesting the rational use of STING agonists in the immunotherapy of brain tumor
    corecore