159 research outputs found
Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve.
We examined the role of nerve terminals in organizing acetylcholine receptors on regenerating skeletal-muscle fibers. When muscle fibers are damaged, they degenerate and are phagocytized, but their basal lamina sheaths survive. New myofibers form within the original basal lamina sheaths, and they become innervated precisely at the original synaptic sites on the sheaths. After denervating and damaging muscle, we allowed myofibers to regenerate but deliberately prevented reinnervation. The distribution of acetylcholine receptors on regenerating myofibers was determined by histological methods, using [125I] alpha-bungarotoxin or horseradish peroxidase-alpha-bungarotoxin; original synaptic sites on the basal lamina sheaths were marked by cholinesterase stain. By one month after damage to the muscle, the new myofibers have accumulations of acetylcholine receptors that are selectively localized to the original synaptic sites. The density of the receptors at these sites is the same as at normal neuromuscular junctions. Folds in the myofiber surface resembling junctional folds at normal neuromuscular junctions also occur at original synaptic sites in the absence of nerve terminals. Our results demonstrate that the biochemical and structural organization of the subsynaptic membrane in regenerating muscle is directed by structures that remain at synaptic sites after removal of the nerve
Movies and TV Influence Tobacco Use in India: Findings from a National Survey
Background: Exposure to mass media may impact the use of tobacco, a major source of illness and death in India. The objective is to test the association of self-reported tobacco smoking and chewing with frequency of use of four types of mass media: newspapers, radio, television, and movies. Methodology/Principal Findings: We analyzed data from a sex-stratified nationally-representative cross-sectional survey of 123,768 women and 74,068 men in India. All models controlled for wealth, education, caste, occupation, urbanicity, religion, marital status, and age. In fully-adjusted models, monthly cinema attendance is associated with increased smoking among women (relative risk [RR]: 1·55; 95% confidence interval [CI]: 1·04–2·31) and men (RR: 1·17; 95% CI: 1·12–1·23) and increased tobacco chewing among men (RR: 1·15; 95% CI: 1·11–1·20). Daily television and radio use is associated with higher likelihood of tobacco chewing among men and women, while daily newspaper use is related to lower likelihood of tobacco chewing among women. Conclusion/Significance: In India, exposure to visual mass media may contribute to increased tobacco consumption in men and women, while newspaper use may suppress the use of tobacco chewing in women. Future studies should investigate the role that different types of media content and media play in influencing other health behaviors
Selection of a core set of RILs from Forrest × Williams 82 to develop a framework map in soybean
Soybean BAC-based physical maps provide a useful platform for gene and QTL map-based cloning, EST mapping, marker development, genome sequencing, and comparative genomic research. Soybean physical maps for “Forrest” and “Williams 82” representing the southern and northern US soybean germplasm base, respectively, have been constructed with different fingerprinting methods. These physical maps are complementary for coverage of gaps on the 20 soybean linkage groups. More than 5,000 genetic markers have been anchored onto the Williams 82 physical map, but only a limited number of markers have been anchored to the Forrest physical map. A mapping population of Forrest × Williams 82 made up of 1,025 F8 recombinant inbred lines (RILs) was used to construct a reference genetic map. A framework map with almost 1,000 genetic markers was constructed using a core set of these RILs. The core set of the population was evaluated with the theoretical population using equality, symmetry and representativeness tests. A high-resolution genetic map will allow integration and utilization of the physical maps to target QTL regions of interest, and to place a larger number of markers into a map in a more efficient way using a core set of RILs
Mechanisms Involved in Nicotinic Acetylcholine Receptor-Induced Neurotransmitter Release from Sympathetic Nerve Terminals in the Mouse Vas Deferens
Prejunctional nicotinic acetylcholine receptors (nAChRs) amplify postganglionic sympathetic neurotransmission, and there are indications that intraterminal Ca2+ stores might be involved. However, the mechanisms by which nAChR activation stimulates neurotransmitter release at such junctions is unknown. Rapid local delivery (picospritzing) of the nAChR agonist epibatidine was combined with intracellular sharp microelectrode recording to monitor spontaneous and field-stimulation-evoked neurotransmitter release from sympathetic nerve terminals in the mouse isolated vas deferens. Locally applied epibatidine (1 µM) produced ‘epibatidine-induced depolarisations’ (EIDs) that were similar in shape to spontaneous excitatory junction potentials (SEJPs) and were abolished by nonselective nAChR antagonists and the purinergic desensitizing agonist α,β-methylene ATP. The amplitude distribution of EIDs was only slightly shifted towards lower amplitudes by the selective α7 nAChR antagonists α-bungarotoxin and methyllcaconitine, the voltage-gated Na+ channel blocker tetrodotoxin or by blocking voltage-gated Ca2+ channels with Cd2+. Lowering the extracellular Ca2+ concentration reduced the frequency of EIDs by 69%, but more surprisingly, the Ca2+-induced Ca2+ release blocker ryanodine greatly decreased the amplitude (by 41%) and the frequency of EIDs by 36%. Ryanodine had no effect on electrically-evoked neurotransmitter release, paired-pulse facilitation, SEJP frequency, SEJP amplitude or SEJP amplitude distribution. These results show that activation of non-α7 nAChRs on sympathetic postganglionic nerve terminals induces high-amplitude junctional potentials that are argued to represent multipacketed neurotransmitter release synchronized by intraterminal Ca2+-induced Ca2+ release, triggered by Ca2+ influx directly through the nAChR. This nAChR-induced neurotransmitter release can be targeted pharmacologically without affecting spontaneous or electrically-evoked neurotransmitter release
Convergence among Non-Sister Dendritic Branches: An Activity-Controlled Mean to Strengthen Network Connectivity
The manner by which axons distribute synaptic connections along dendrites remains a fundamental unresolved issue in neuronal development and physiology. We found in vitro and in vivo indications that dendrites determine the density, location and strength of their synaptic inputs by controlling the distance of their branches from those of their neighbors. Such control occurs through collective branch convergence, a behavior promoted by AMPA and NMDA glutamate receptor activity. At hubs of convergence sites, the incidence of axo-dendritic contacts as well as clustering levels, pre- and post-synaptic protein content and secretion capacity of synaptic connections are higher than found elsewhere. This coupling between synaptic distribution and the pattern of dendritic overlapping results in ‘Economical Small World Network’, a network configuration that enables single axons to innervate multiple and remote dendrites using short wiring lengths. Thus, activity-mediated regulation of the proximity among dendritic branches serves to pattern and strengthen neuronal connectivity
Trends in parameterization, economics and host behaviour in influenza pandemic modelling: a review and reporting protocol.
BACKGROUND: The volume of influenza pandemic modelling studies has increased dramatically in the last decade. Many models incorporate now sophisticated parameterization and validation techniques, economic analyses and the behaviour of individuals. METHODS: We reviewed trends in these aspects in models for influenza pandemic preparedness that aimed to generate policy insights for epidemic management and were published from 2000 to September 2011, i.e. before and after the 2009 pandemic. RESULTS: We find that many influenza pandemics models rely on parameters from previous modelling studies, models are rarely validated using observed data and are seldom applied to low-income countries. Mechanisms for international data sharing would be necessary to facilitate a wider adoption of model validation. The variety of modelling decisions makes it difficult to compare and evaluate models systematically. CONCLUSIONS: We propose a model Characteristics, Construction, Parameterization and Validation aspects protocol (CCPV protocol) to contribute to the systematisation of the reporting of models with an emphasis on the incorporation of economic aspects and host behaviour. Model reporting, as already exists in many other fields of modelling, would increase confidence in model results, and transparency in their assessment and comparison
Sexually Dimorphic Serotonergic Dysfunction in a Mouse Model of Huntington's Disease and Depression
Depression is the most common psychiatric disorder in Huntington's disease (HD) patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT) and the forced-swimming test (FST). The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT1A receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT2A receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2) mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice
Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet
Background: Efforts towards utilisation of diets without fish meal (FM) or fish oil (FO) in finfish aquaculture have been being made for more than two decades. Metabolic responses to substitution of fishery products have been shown to impact growth performance and immune system of fish as well as their subsequent nutritional value, particularly in marine fish species, which exhibit low capacity for biosynthesis of long-chain poly-unsaturated fatty acids (LC-PUFA). The main objective of the present study was to analyse the effects of a plant-based diet on the hepatic transcriptome of European sea bass (Dicentrarchus labrax). Results: We report the first results obtained using a transcriptomic approach on the liver of two half-sibfamilies of the European sea bass that exhibit similar growth rates when fed a fish-based diet (FD), but significantly different growth rates when fed an all-plant diet (VD). Overall gene expression was analysed using oligo DNA microarrays (GPL9663). Statistical analysis identified 582 unique annotated genes differentially expressed between groups of fish fed the two diets, 199 genes regulated by genetic factors, and 72 genes that exhibited diet-family interactions. The expression of several genes involved in the LC-PUFA and cholesterol biosynthetic pathways was found to be up-regulated in fish fed VD, suggesting a stimulation of the lipogenic pathways. No significant diet-family interaction for the regulation of LC-PUFA biosynthesis pathways could be detected by microarray analysis. This result was in agreement with LC-PUFA profiles, which were found to be similar in the flesh of the two half-sibfamilies. In addition, the combination of our transcriptomic data with an analysis of plasmatic immune parameters revealed a stimulation of complement activity associated with an immunodeficiency in the fish fed VD, and different inflammatory status between the two half-sibfamilies. Biological processes related to protein catabolism, amino acid transaminations, RNA splicing and blood coagulation were also found to be regulated by diet, while the expression of genes involved in protein and ATP synthesis differed between the half-sibfamilies. Conclusions: Overall, the combined gene expression, compositional and biochemical studies demonstrated a large panel of metabolic and physiological effects induced by total substitution of both FM and FO in the diets of European sea bass and revealed physiological characteristics associated with the two half-sibfamilies
- …