373 research outputs found

    The Evolution of Optical Depth in the Ly-alpha Forest: Evidence Against Reionization at z~6

    Get PDF
    We examine the evolution of the IGM Ly-alpha optical depth distribution using the transmitted flux probability distribution function (PDF) in a sample of 63 QSOs spanning absorption redshifts 1.7 < z < 5.8. The data are compared to two theoretical optical depth distributions: a model distribution based on the density distribution of Miralda-Escude et al. (2000) (MHR00), and a lognormal distribution. We assume a uniform UV background and an isothermal IGM for the MHR00 model, as has been done in previous works. Under these assumptions, the MHR00 model produces poor fits to the observed flux PDFs at redshifts where the optical depth distribution is well sampled, unless large continuum corrections are applied. However, the lognormal optical depth distribution fits the data at all redshifts with only minor continuum adjustments. We use a simple parametrization for the evolution of the lognormal parameters to calculate the expected mean transmitted flux at z > 5.4. The lognormal optical depth distribution predicts the observed Ly-alpha and Ly-beta effective optical depths at z > 5.7 while simultaneously fitting the mean transmitted flux down to z = 1.6. If the evolution of the lognormal distribution at z < 5 reflects a slowly-evolving density field, temperature, and UV background, then no sudden change in the IGM at z ~ 6 due to late reionization appears necessary. We have used the lognormal optical depth distribution without any assumption about the underlying density field. If the MHR00 density distribution is correct, then a non-uniform UV background and/or IGM temperature may be required to produce the correct flux PDF. We find that an inverse temperature-density relation greatly improves the PDF fits, but with a large scatter in the equation of state index. [Abridged]Comment: 45 pages, 16 figures, submitted to Ap

    Expansion and Collapse in the Cosmic Web

    Get PDF
    We study the kinematics of the gaseous cosmic web at high redshift with Lyman alpha forest absorption in multiple QSO sightlines. Using a simple analytic model and a cosmological hydrodynamic simulation we constrain the underlying three-dimensional distribution of velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The distribution is found to be in good agreement with the intergalactic medium (IGM) undergoing large scale motions dominated by the Hubble flow. Modeling the Lyman alpha clouds analytically and with a hydrodynamics simulation, the average expansion velocity of the gaseous structures causing the Lyman alpha forest in the lower redshift (z = 2) sample appears about 20 percent lower than the local Hubble expansion velocity. We interpret this as tentative evidence for some clouds undergoing gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of clouds at redshifts from 2 to 3.8 expand typically about 5 - 20 percent faster than the Hubble flow. This behavior is explained if most absorbers in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. We find no evidence for the observed distribution of velocity shear being significantly influenced by processes other than Hubble expansion and gravitational instability, like galactic winds. To avoid overly disturbing the IGM, winds may be old and/or limp by the time we observe them in the Lyman alpha forest, or they may occupy only an insignificant volume fraction of the IGM. (abridged)Comment: 63 pages, 26 figures, AAS Latex; ApJ, in pres

    Extended and filamentary Lyα emission from the formation of a protogalactic halo at z = 2.63

    Get PDF
    We report the observation of a further asymmetric, extended Lyα emitting halo at z = 2.63, from our ultra-deep, long-slit spectroscopic survey of faint high-redshift emitters, undertaken with Magellan LDSS3 in the GOODS-S field. The Lyα emission, detected over more than 30 kpc, is spatially coincident with a statistically significant concentration of galaxies visible in deep broad-band imaging. While these faint galaxies without spectroscopic redshifts cannot all with certainty be associated with one another or with the Lyα emission, there are a number of compelling reasons why they very probably form a Milky Way halo-mass group at the Lyα redshift. Filamentary structure, possibly consisting of Lyα emission with very high equivalent width, blue stellar continua and evidence for disturbed stellar populations, suggest that the properties of the emitting region reflect ongoing galaxy assembly, with recent galaxy mergers and star formation occurring in the group. The Lyα emission may be powered by cooling radiation or spatially extended star formation in the halo, but is unlikely to be fluorescence driven by either an active galactic nucleus or one of the galaxies. A comparison with the Lyα surface brightness profiles of more typical, bright Lyα emitters or Lyman break galaxies from similarly deep two-dimensional spectra shows them to be conspicuously different from the extended, asymmetric object studied here. This is consistent with the picture that typical Lyα emitters represent Lyα resonantly scattering from single, kinematically quiescent, compact sources of ionizing radiation, whereas extended emission of the kind seen in the current halo reflect a more active, kinematically disturbed stage in the galaxy formation process. Hence, unusual Lyα emission as observed here may provide unique insights into what is probably a key mode of galaxy formation at high redshifts. Our observations provide further, circumstantial evidence that galaxy mergers may promote the production and/or escape of ionizing radiation, and that the haloes of interacting galaxies may be significant sources for ionizing photons during the epoch of reionization

    Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice.

    Get PDF
    Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin\u27s-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model

    The Spitzer c2d survey of Large, Nearby, Interstellar Clouds. V. Chamaeleon II Observed with IRAC

    Get PDF
    We present IRAC (3.6, 4.5, 5.8, and 8.0 micron) observations of the Chamaeleon II molecular cloud. The observed area covers about 1 square degree defined by AV>2A_V >2. Analysis of the data in the 2005 c2d catalogs reveals a small number of sources (40) with properties similar to those of young stellaror substellar objects (YSOs). The surface density of these YSO candidates is low, and contamination by background galaxies appears to be substantial, especially for sources classified as Class I or flat SED. We discuss this problem in some detail and conclude that very few of the candidate YSOs in early evolutionary stages are actually in the Cha II cloud. Using a refined set of criteria, we define a smaller, but more reliable, set of 24 YSO candidates.Comment: 19 pages, 10 figures, in press Ap

    Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gases: A Green's function approach

    Get PDF
    Spontaneous emission and Lamb shift of atoms in absorbing dielectrics are discussed. A Green's-function approach is used based on the multipolar interaction Hamiltonian of a collection of atomic dipoles with the quantised radiation field. The rate of decay and level shifts are determined by the retarded Green's-function of the interacting electric displacement field, which is calculated from a Dyson equation describing multiple scattering. The positions of the atomic dipoles forming the dielectrics are assumed to be uncorrelated and a continuum approximation is used. The associated unphysical interactions between different atoms at the same location is eliminated by removing the point-interaction term from the free-space Green's-function (local field correction). For the case of an atom in a purely dispersive medium the spontaneous emission rate is altered by the well-known Lorentz local-field factor. In the presence of absorption a result different from previously suggested expressions is found and nearest-neighbour interactions are shown to be important.Comment: 6 pages no figure

    Trends in Silicates in the β\beta Pictoris Disk

    Full text link
    While beta Pic is known to host silicates in ring-like structures, whether the properties of these silicate dust vary with stellocentric distance remains an open question. We re-analyze the beta Pictoris debris disk spectrum from the Spitzer Infrared Spectrograph (IRS) and a new IRTF/SpeX spectrum to investigate trends in Fe/Mg ratio, shape, and crystallinity in grains as a function of wavelength, a proxy for stellocentric distance. By analyzing a re-calibrated and re-extracted spectrum, we identify a new 18 micron forsterite emission feature and recover a 23 micron forsterite emission feature with a substantially larger line-to-continuum ratio than previously reported. We find that these prominent spectral features are primarily produced by small submicron-sized grains, which are continuously generated and replenished from planetesimal collisions in the disk and can elucidate their parent bodies' composition. We discover three trends about these small grains: as stellocentric distance increases, (1) small silicate grains become more crystalline (less amorphous), (2) they become more irregular in shape, and (3) for crystalline silicate grains, the Fe/Mg ratio decreases. Applying these trends to beta Pic's planetary architecture, we find that the dust population exterior to the orbits of beta Pic b and c differs substantially in crystallinity and shape. We also find a tentative 3-5 micron dust excess due to spatially unresolved hot dust emission close to the star. From our findings, we infer that the surfaces of large planetesimals are more Fe-rich and collisionally-processed closer to the star but more Fe-poor and primordial farther from the star.Comment: 19 pages, 12 figures, Accepted for Publication in Ap

    Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    Get PDF
    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels

    Small Scale Structure at High Redshift: IV. Low Ionization Gas Intersecting Three Lines of Sight to Q2237+0305

    Full text link
    We have obtained Keck HIRES spectra of three images of the gravitationally lensed QSO 2237+0305 to study low ionization absorption systems and their differences in terms of projected velocity and column density across the lines of sight. We detect CaII absorption from our Galaxy, and a system of High Velocity Clouds from the lensing galaxy (z=0.039). CaII components with total equivalent widths similar to those of Galactic intermediate and high velocity clouds are spread out over several hundred km/s at impact parameters of less than one kpc from the center of the lensing galaxy. We have also studied three low ionization MgII-FeII systems in detail. All three systems cover all three lines of sight, suggesting that the gaseous structures giving rise to MgII complexes are larger than about 0.5 kpc. However, in most cases it is difficult to trace individual MgII `cloudlets' over distances larger than 200-300 pc, indicating that typical sizes of the MgII cloudlets are smaller than the sizes inferred earlier for the individual CIV high ionization gas clouds. We tentatively interpret the absorption pattern of the strongest MgII system in terms of an expanding bubble or galactic wind and show that the possible loci occupied by the model bubble in radius-velocity space overlap with the observed characteristics of Galactic supershells. (abridged).Comment: 40 latex pages, 12 postscript figures. Accepted for publication by Ap

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al
    • …
    corecore