22 research outputs found

    Low-dose M.tb infection but not BCG or MTBVAC vaccination enhances heterologous antibody titres in non-human primates

    Get PDF
    Introduction: Mycobacteria are known to exert a range of heterologous effects on the immune system. The mycobacteria-based Freund’s Complete Adjuvant is a potent non-specific stimulator of the immune response used in immunization protocols promoting antibody production, and Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccination has been linked with decreased morbidity and mortality beyond the specific protection it provides against tuberculosis (TB) in some populations and age groups. The role of heterologous antibodies in this phenomenon, if any, remains unclear and under-studied. Methods: We set out to evaluate antibody responses to a range of unrelated pathogens following infection with Mycobacterium tuberculosis (M.tb) and vaccination with BCG or a candidate TB vaccine, MTBVAC, in non-human primates. Results: We demonstrate a significant increase in the titer of antibodies against SARS-CoV-2, cytomegalovirus, Epstein-Barr virus, tetanus toxoid, and respiratory syncytial virus antigens following low-dose aerosol infection with M.tb. The magnitude of some of these responses correlated with TB disease severity. However, vaccination with BCG administered by the intradermal, intravenous or aerosol routes, or intradermal delivery of MTBVAC, did not increase antibody responses against unrelated pathogens. Discussion: Our findings suggest that it is unlikely that heterologous antibodies contribute to the non-specific effects of these vaccines. The apparent dysregulation of B cell responses associated with TB disease warrants further investigation, with potential implications for risk of B cell cancers and novel therapeutic strategies

    Development of a non-human primate BCG infection model for the evaluation of candidate tuberculosis vaccines.

    Get PDF
    The lack of validated immunological correlates of protection makes tuberculosis vaccine development difficult and expensive. Using intradermal bacille Calmette-Guréin (BCG) as a surrogate for aerosol Mycobacterium tuberculosis (M.tb) in a controlled human infection model could facilitate vaccine development, but such a model requires preclinical validation. Non-human primates (NHPs) may provide the best model in which to do this. Cynomolgus and rhesus macaques were infected with BCG by intradermal injection. BCG was quantified from a skin biopsy of the infection site and from draining axillary lymph nodes, by culture on solid agar and quantitative polymerase chain reaction. BCG was detected up to 28 days post-infection, with higher amounts of BCG detected in lymph nodes after high dose compared to standard dose infection. Quantifying BCG from lymph nodes of cynomolgus macaques 14 days post-high dose infection showed a significant reduction in the amount of BCG detected in the BCG-vaccinated compared to BCG-naïve animals. Demonstrating a detectable vaccine effect in the lymph nodes of cynomolgus macaques, which is similar in magnitude to that seen in an aerosol M.tb infection model, provides support for proof-of-concept of an intradermal BCG infection model and evidence to support the further evaluation of a human BCG infection model

    Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques

    Get PDF
    In many countries where tuberculosis (TB) is endemic, the Bacillus Calmette-Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most animal models used to study novel TB vaccine candidates rely on the use of adult animals. Human studies show that the infant immune system is different to that of an adult. Understanding how the phenotypic profile and functional ability of the immature host immune system compares to that of a mature adult, together with the subsequent BCG immune response, is critical to ensuring that new TB vaccines are tested in the most appropriate models. BCG-specific immune responses were detected in macaques vaccinated within a week of birth from six weeks after immunization indicating that neonatal macaques are able to generate a functional cellular response to the vaccine. However, the responses measured were significantly lower than those typically observed following BCG vaccination in adult rhesus macaques and infant profiles were skewed towards the activation and attraction of macrophages and monocytes and the synthesis in addition to release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. The frequency of specific immune cell populations changed significantly through the first three years of life as the infants developed into young adult macaques. Notably, the CD4:CD8 ratio significantly declined as the macaques aged due to a significant decrease in the proportion of CD4+ T-cells relative to a significant increase in CD8+ T-cells. Also, the frequency of both CD4+ and CD8+ T-cells expressing the memory marker CD95, and memory subset populations including effector memory, central memory and stem cell memory, increased significantly as animals matured. Infant macaques, vaccinated with BCG within a week of birth, possessed a significantly higher frequency of CD14+ classical monocytes and granulocytes which remained different throughout the first three years of life compared to unvaccinated age matched animals. These findings, along with the increase in monokines following vaccination in infants, may provide an insight into the mechanism by which vaccination with BCG is able to provide non-specific immunity against non-mycobacterial organisms

    The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells.

    Get PDF
    The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose

    A non-human primate in vitro functional assay for the early evaluation of TB vaccine candidates.

    Get PDF
    We present a non-human primate mycobacterial growth inhibition assay (MGIA) using in vitro blood or cell co-culture with the aim of refining and expediting early tuberculosis vaccine testing. We have taken steps to optimise the assay using cryopreserved peripheral blood mononuclear cells, transfer it to end-user institutes, and assess technical and biological validity. Increasing cell concentration or mycobacterial input and co-culturing in static 48-well plates compared with rotating tubes improved intra-assay repeatability and sensitivity. Standardisation and harmonisation efforts resulted in high consistency agreements, with repeatability and intermediate precision <10% coefficient of variation (CV) and inter-site reproducibility <20% CV; although some systematic differences were observed. As proof-of-concept, we demonstrated ability to detect a BCG vaccine-induced improvement in growth inhibition in macaque samples, and a correlation between MGIA outcome and measures of protection from in vivo disease development following challenge with either intradermal BCG or aerosol/endobronchial Mycobacterium tuberculosis (M.tb) at a group and individual animal level

    Determination of the Pharmacokinetics and Pharmacodynamics of Isoniazid, Rifampicin, Pyrazinamide and Ethambutol in a Cross-Over Cynomolgus Macaque Model of Mycobacterium tuberculosis Infection

    Get PDF
    Innovative cross-over study designs were explored in non-human primate (NHP) studies to determine the value of this approach for the evaluation of drug efficacy against tuberculosis (TB). Firstly, the pharmacokinetics (PK) of each of the drugs Isoniazid (H), Rifampicin (R), Pyrazinamide (Z) and Ethambutol (E), that are standardly used for the treatment of tuberculosis, was established in the blood of macaques after oral dosing as a monotherapy or in combination. Two studies were conducted to evaluate the pharmacokinetics and pharmacodynamics of different drug combinations using cross-over designs. The first employed a balanced, three-period Pigeon design with an extra period; this ensured that treatment by period interactions and carry-over could be detected comparing the treatments HR, HZ and HRZ using H37Rv as the challenge strain of Mycobacterium tuberculosis (M. tb). Although the design accounted for considerable variability between animals, the three regimens evaluated could not be distinguished using any of the alternative endpoints assessed. However, the degree of pathology achieved using H37Rv in the model during this study was less than expected. Based on these findings, a second experiment using a classical AB/BA design comparing HE with HRZ was conducted using the M. tb Erdman strain. More extensive pathology was observed, and differences in computerized tomography (CT) scores and bacteriology counts in the lungs were detected, although due to the small group sizes, clearer differences were not distinguished. Type 1 T helper (Th1) cell response profiles were characterized using the IFN-γ ELISPOT assay and revealed differences between drug treatments that corresponded to decreases in disease burden. Therefore, the studies performed support the utility of the NHP model for the determination of PK/PD of TB drugs, although further work is required to optimize the use of cross-over study designs

    TB and SIV Coinfection; a Model for Evaluating Vaccine Strategies against TB Reactivation in Asian Origin Cynomolgus Macaques: A Pilot Study Using BCG Vaccination

    No full text
    This pilot study aimed to determine the utility of a cynomolgus macaque model of coinfection with simian immunodeficiency virus (SIV) for the assessment of vaccines designed to prevent reactivation of TB. Following infection caused by aerosol exposure to an ultralow dose of Mycobacterium tuberculosis (M. tb), data trends indicated that subsequent coinfection with SIVmac32H perturbed control of M. tb infection as evidenced by the increased occurrence of progressive disease in this group, higher levels of pathology and increased frequency of progressive tuberculous granulomas in the lung. BCG vaccination led to improved control of TB-induced disease and lower viral load in comparison to unvaccinated coinfected animals. The M. tb-specific IFNγ response after exposure to M. tb, previously shown to be associated with bacterial burden, was lower in the BCG-vaccinated group than in the unvaccinated groups. Levels of CD4+ and CD8+ T cells decreased in coinfected animals, with counts recovering more quickly in the BCG-vaccinated group. This pilot study provides proof of concept to support the use of the model for evaluation of interventions against reactivated/exacerbated TB caused by human immunodeficiency virus (HIV) infection
    corecore