1,801 research outputs found

    Black hole thermalization rate from brane anti-brane model

    Full text link
    We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed.Comment: 11 pages, late

    The Viscosity Bound Conjecture and Hydrodynamics of M2-Brane Theory at Finite Chemical Potential

    Full text link
    Kovtun, Son and Starinets have conjectured that the viscosity to entropy density ratio η/s\eta/s is always bounded from below by a universal multiple of ℏ\hbar i.e., ℏ/(4πkB)\hbar/(4\pi k_{B}) for all forms of matter. Mysteriously, the proposed viscosity bound appears to be saturated in all computations done whenever a supergravity dual is available. We consider the near horizon limit of a stack of M2-branes in the grand canonical ensemble at finite R-charge densities, corresponding to non-zero angular momentum in the bulk. The corresponding four-dimensional R-charged black hole in Anti-de Sitter space provides a holographic dual in which various transport coefficients can be calculated. We find that the shear viscosity increases as soon as a background R-charge density is turned on. We numerically compute the few first corrections to the shear viscosity to entropy density ratio η/s\eta/s and surprisingly discover that up to fourth order all corrections originating from a non-zero chemical potential vanish, leaving the bound saturated. This is a sharp signal in favor of the saturation of the viscosity bound for event horizons even in the presence of some finite background field strength. We discuss implications of this observation for the conjectured bound.Comment: LaTeX, 26+1 Pages, 4 Figures, Version 2: references adde

    Kinetics of oxygen evolution at alpha-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy

    Get PDF
    Closed access. This article was published in the journal, Physical Chemistry Chemical Physics [© Royal Society of Chemistry] and the definitive version is available at: http://dx.doi.org/10.1039/C0CP02408BPhotoelectrochemical Impedance Spectroscopy (PEIS) has been used to characterize the kinetics of electron transfer and recombination taking place during oxygen evolution at illuminated polycrystalline α-Fe2O3 electrodes prepared by aerosol-assisted chemical vapour deposition from a ferrocene precursor. The PEIS results were analysed using a phenomenological approach since the mechanism of the oxygen evolution reaction is not known a priori. The results indicate that the photocurrent onset potential is strongly affected by Fermi level pinning since the rate constant for surface recombination is almost constant in this potential region. The phenomenological rate constant for electron transfer was found to increase with potential, suggesting that the potential drop in the Helmholtz layer influences the activation energy for the oxygen evolution process. The PEIS analysis also shows that the limiting factor determining the performance of the α-Fe2O3 photoanode is electron–hole recombination in the bulk of the oxide

    Properties of some conformal field theories with M-theory duals

    Get PDF
    By studying classes of supersymmetric solutions of D=11 supergravity with AdS_5 factors, we determine some properties of the dual four-dimensional N=1 superconformal field theories. For some explicit solutions we calculate the central charges and also the conformal dimensions of certain chiral primary operators arising from wrapped membranes. For the most general class of solutions we show that there is a consistent Kaluza-Klein truncation to minimal D=5 gauged supergravity. This latter result allows us to study some aspects of the dual strongly coupled thermal plasma with a non-zero R-charge chemical potential and, in particular, we show that the ratio of the shear viscosity to the entropy density has the universal value of 1/4 pi.Comment: Consistent truncation extended to include fermions. Reference added. 28 page

    String Theory and Quantum Chromodynamics

    Full text link
    I review recent progress on the connection between string theory and quantum chromodynamics in the context of the gauge/gravity duality. Emphasis is placed on conciseness and conceptual aspects rather than on technical details. Topics covered include the large-Nc limit of gauge theories, the gravitational description of gauge theory thermodynamics and hydrodynamics, and confinement/deconfinement thermal phase transitions.Comment: 38 pages, 24 figures. Lectures given at the RTN Winter School on "Strings, Supergravity and Gauge Theories" at CERN on January 15-19, 200

    Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2

    Get PDF
    Quantum-mechanical fluctuations in strongly correlated electron systems cause unconventional phenomena such as non-Fermi liquid behavior, and arguably high temperature superconductivity. Here we report the discovery of a field-tuned quantum critical phenomenon in stoichiometric CeCu2Ge2, a spin density wave ordered heavy fermion metal that exhibits unconventional superconductivity under ~ 10 GPa of applied pressure. Our finding of the associated quantum critical spin fluctuations of the antiferromagnetic spin density wave order, dominating the local fluctuations due to single-site Kondo effect, provide new information about the underlying mechanism that can be important in understanding superconductivity in this novel compound.Comment: Heavy Fermion, Quantum Critical Phenomeno

    The effect of higher derivative correction on η/s\eta /s and conductivities in STU model

    Full text link
    In this paper we study the ratio of shear viscosity to entropy, electrical and thermal conductivities for the R-charged black hole in STU model. We generalize previous works to the case of a black hole with three different charges. Actually we use diffusion constant to obtain ratio of shear viscosity to entropy. By applying the thermodynamical stability we recover previous results. Also we investigate the effect of higher derivative corrections.Comment: revised versio

    Hydrodynamics from charged black branes

    Full text link
    We extend the recent work on fluid-gravity correspondence to charged black-branes by determining the metric duals to arbitrary charged fluid configuration up to second order in the boundary derivative expansion. We also derive the energy-momentum tensor and the charge current for these configurations up to second order in the boundary derivative expansion. We find a new term in the charge current when there is a bulk Chern-Simons interaction thus resolving an earlier discrepancy between thermodynamics of charged rotating black holes and boundary hydrodynamics. We have also confirmed that all our expressions are covariant under boundary Weyl-transformations as expected.Comment: 0+ 31 Pages; v2: 0+33 pages, typos corrected and new sections (in appendix) added; v3:published versio

    Black Hole Entropy and Superconformal Field Theories on Brane-Antibrane Systems

    Full text link
    We obtain the enropy of Schwarzschild and charged black holes in D>4 from superconformal gases that live on p=10-D dimensional brane-antibrane systems wrapped on T^p. The preperties of the strongly coupled superconformal theories such as the appearance of hidden dimensions (for p=1,4) and fractional strings (for p=5) are crucial for our results. In all cases, the Schwarzschild radius is given by the transverse fluctuations of the branes and antibranes due to the finite temperature. We show that our results can be generalized to multicharged black holes.Comment: 24 pages in phyzzx.te
    • 

    corecore