6 research outputs found

    Vanadium : A Possible Role in the Protection of Host Cells Bearing Transplantable Murine Lymphoma

    Get PDF
    The effect of oral administration of an optimum dose of ammonium monovanadate was studied in hosts bearing a transplantable ascitic lymphoma. This was supported by the biochemical indices relating to markers like reduced glutathione (GSH), extent of lipid peroxidation and activities of glutathione per-oxidase (GPx) in hepatic tissues of the experimental animals. These biochemi-cal parameters showed substantial alterations during the period of tumor progres-sion in the experimental group treated with a low dose of vanadium (0.005 ,μ-M) suggesting a possible correlation between the observed variation in these markers and the survival rates in the animals receiving vanadium treatment

    High-protein rice in high-yielding background, cv. Naveen.

    Get PDF
    Not AvailableWhile the developing world is approaching towards food security, nutritional aspects must be addressed properly to combat malnutrition. As the staple food of half of the world’s population, rice is a major source of nutrition and needs to be nutritionally enriched with proteins, micronutrients, etc. With the objective of quantitative and qualitative improvement of grain protein content (GPC) in a popular high-yielding background, ‘Naveen’, we developed backcross popu-lation using high GPC (11%–13%) donor, ARC 10075. The range of GPC in BC3F4 lines was 7.13%–13.6%, estimated through calibrated NIR spectroscopy. Among the population lines, seven having phenotypic similarity with the recurrent parent, Naveen were identified based on high yield coupled with high pro-tein content (10%–12%). Further, elevated levels of glutelin and some of the essential amino acids such as lysine and threonine also indicated the qualitative im-provement of grain protein of these lines. Based on higher GPC and protein yield in multilocational test-ing two high-yielding lines, viz. CR2829-PLN-37 (CR Dhan 310), and CR 2829-PLN-100 (CR Dhan 311/Mukul) in the genetic background of cv. Naveen with an average 10.2% and 10.1% GPC respectively, in polished rice were released at the national and state level respectively. These high-yielding varieties with high GPC can significantly contribute towards better nourishment of millions of underprivileged children depending mainly on rice for their nutrition.Not Availabl

    Not Available

    No full text
    Not AvailableLack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identifcation of robust QTLs for grain protein content (GPC) in rice. In the present investigation a BC3F4 mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40K Afmetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identifed QTLs, one for GPC (qGPC1.1) and the other two for single grain protein content (qSGPC2.1, qSGPC7.1) were stable over the environments explaining 13%, 14% and 7.8% of the phenotypic variances, respectively. Stability and repeatability of these additive QTLs were supported by the synergistic additive efects of multi-environmental-QTLs. One epistatic-QTL, independent of the main efect QTL was detected over the environment for SGPC. A few functional genes governing seed storage protein were hypothesised inside these identifed QTLs. The qGPC1.1 was validated by NIR Spectroscopy-based high throughput phenotyping in BC3F5 population. Higher glutelin content was estimated in high-protein lines with the introgression of qGPC1.1 in telomeric region of short arm of chromosome 1. This was supported by the postulation of probable candidate gene inside this QTL region encoding glutelin family proteins.Not Availabl

    Not Available

    No full text
    Not AvailableLack of appropriate donors, non-utilization of high throughput phenotyping and genotyping platforms with high genotype × environment interaction restrained identification of robust QTLs for grain protein content (GPC) in rice. In the present investigation a BC3F4 mapping population was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs for protein content. Three of the identified QTLs, one for GPC (qGPC1.1) and the other two for single grain protein content (qSGPC2.1, qSGPC7.1) were stable over the environments explaining 13%, 14% and 7.8% of the phenotypic variances, respectively. Stability and repeatability of these additive QTLs were supported by the synergistic additive effects of multi-environmental-QTLs. One epistatic-QTL, independent of the main effect QTL was detected over the environment for SGPC. A few functional genes governing seed storage protein were hypothesised inside these identified QTLs. The qGPC1.1 was validated by NIR Spectroscopy-based high throughput phenotyping in BC3F5 population. Higher glutelin content was estimated in high-protein lines with the introgression of qGPC1.1 in telomeric region of short arm of chromosome 1. This was supported by the postulation of probable candidate gene inside this QTL region encoding glutelin family proteins.Not Availabl
    corecore