9 research outputs found

    Tilt Texture Domains on a Membrane and Chirality induced Budding

    Full text link
    We study the equilibrium conformations of a lipid domain on a planar fluid membrane where the domain is decorated by a vector field representing the tilt of the stiff fatty acid chains of the lipid molecules, while the surrounding membrane is fluid and structureless. The inclusion of chirality in the bulk of the domain induces a novel budding of the membrane, which preempts the budding induced by a decrease in interfacial tension.Comment: 5 pages, 3 figure

    Mutation of a single residue, β-glutamate-20, alters protein–lipid interactions of light harvesting complex II

    Get PDF
    It is well established that assembly of the peripheral antenna complex, LH2, is required for proper photosynthetic membrane biogenesis in the purple bacterium Rhodobacter sphaeroides. The underlying interactions are, as yet, not understood. Here we examined the relationship between the morphology of the photosynthetic membrane and the lipid–protein interactions at the LH2–lipid interface. The non-bilayer lipid, phosphatidylethanolamine, is shown to be highly enriched in the boundary lipid phase of LH2. Sequence alignments indicate a putative lipid binding site, which includes β-glutamate-20 and the adjacent carotenoid end group. Replacement of β-glutamate-20 with alanine results in significant reduction of phosphatidylethanolamine and concomitant raise in phosphatidylcholine in the boundary lipid phase of LH2 without altering the lipid composition of the bulk phase. The morphology of the LH2 housing membrane is, however, unaffected by the amino acid replacement. In contrast, simultaneous modification of glutamate-20 and exchange of the carotenoid sphaeroidenone with neurosporene results in significant enlargement of the vesicular membrane invaginations. These findings suggest that the LH2 complex, specifically β-glutamate-20 and the carotenoids' polar head group, contribute to the shaping of the photosynthetic membrane by specific interactions with surrounding lipid molecules

    Chirality-Induced Budding: A Raft-Mediated Mechanism for Endocytosis and Morphology of Caveolae?

    Get PDF
    The formation of transport carriers (spherical vesicles and tubules) involves membrane budding, growth, and ultimately fission. We propose a mechanism of membrane budding, wherein the tilt and chirality of constituent molecules, confined to a patch of area A, induces buds of ∼50–100 nm that are comparable to vesicles involved in endocytosis. Because such chiral and tilted lipid molecules are likely to exist in “rafts”, we suggest the involvement of this mechanism in generating membrane buds in the clathrin and dynamin-independent, raft-component mediated endocytosis of glycosylphosphatidylinositol-anchored proteins. We argue that caveolae, permanent cell surface structures with characteristic morphology and enriched in raft constituents, are also likely to be formed by this mechanism. Thus, molecular chirality and tilt, and its expression over large spatial scales may be a common organizing principle in membrane budding of transport carriers

    Caste and sex specific olfactory glomerular organization and brain architecture in two sympatric ant species camponotus sericeus and camponotus compressus (fabricius, 1798)

    No full text
    We use monoclonal antibodies against synaptic proteins and anterograde tracing with neurobiotin to describe the architecture of the antennal lobes in different castes of two ant species - Camponotus sericeus and Camponotus compressus. The reproductives and worker classes are readily categorized based on size and external morphology. The overall organization of brain neuropile is comparable between castes with differences only in the visual ganglia. Males have a larger fraction of neuropile occupied by the medulla and lobula than females. In the diurnal species, C sericeus these regions are more highly represented, than in the nocturnal species C compressus. The most striking differences are in the antennal lobe where males possess a macroglomerulus, which is about ten times larger in volume than the other glomeruli; such a specialization is absent in females. Minor workers possess a significantly larger number of glomeruli than the majors despite the smaller overall volume of the lobe. These caste-specific differences occur mainly within glomerular clusters that receive input from sensory neurons that project in tracts - T4 and T5 - within the antennal nerve. The comparative anatomy of different castes of ants provides an entry point into a future systematic analysis of how divergent brain architectures can arise within a single species. (C) 2009 Elsevier Ltd. All rights reserved

    Endocytosis unplugged: multiple ways to enter the cell

    No full text
    corecore