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ABSTRACT The formation of transport carriers (spherical vesicles and tubules) involves membrane budding, growth, and
ultimately fission. We propose a mechanism of membrane budding, wherein the tilt and chirality of constituent molecules,
confined to a patch of area A, induces buds of ;50–100 nm that are comparable to vesicles involved in endocytosis. Because
such chiral and tilted lipid molecules are likely to exist in ‘‘rafts’’, we suggest the involvement of this mechanism in generating
membrane buds in the clathrin and dynamin-independent, raft-component mediated endocytosis of glycosylphosphatidylinositol-
anchored proteins. We argue that caveolae, permanent cell surface structures with characteristic morphology and enriched in
raft constituents, are also likely to be formed by this mechanism. Thus, molecular chirality and tilt, and its expression over large
spatial scales may be a common organizing principle in membrane budding of transport carriers.

INTRODUCTION

The biogenesis of transport carriers involves membrane

deformation, its growth into a spherical bud or tubule, and

finally membrane fission (1). A special case of membrane

traffic is displayed in endocytosis, the uptake of membrane

proteins, lipids, and extracellular ligands from the cell sur-

face. Endocytosis occurs in a wide range of cellular con-

texts with vastly differing requirements; cells appear to have

evolved a diversity of pathways in terms of molecular mech-

anisms, regulation, cargo specificity, and kinetics (2,3). One

such endocytic mechanism is the clathrin mediated (CM)

pathway (4) responsible for the internalization of proteins

such as transferrin (Tf) and particles such as low-density lipo-

proteins (LDL) that bind to specific transmembrane receptors

on the cell surface. A large number of membrane deforming

proteins such as clathrin, epsin, and dynamin, have been

reported to be involved in CM endocytosis (3–6). However,

even in this well-studied pathway, the physicochemical mech-

anism of membrane deformation and pinching are poorly un-

derstood (5).

Cell surface lipid-anchored proteins such as glycosylphos-

phatidylinositol (GPI)-anchored proteins (7,8) on the other

hand, are endocytosed via an entirely different pathway. This

pathway is responsible for the pinocytic (fluid-phase) uptake

in many cell types from mammalian to insect cells, and does

not involve the membrane deforming proteins of the CM-

mediated pathway (7,9). Furthermore unlike the transmem-

brane cargo of the clathrin-mediated pathway, GPI-anchored

proteins do not have any cytoplasmic extension to link with

other cytoplasmic proteins involved in the formation of the

appropriate carrier. Interestingly, GPI-anchored protein traf-

ficking can be regulated by altering levels of cellular lipids,

specifically cholesterol and sphingolipids (10,11).

We have recently shown that lipid-anchored proteins

such as GPI-anchored proteins are organized in nanoscale,

cholesterol-dependent clusters. This clustering is necessary

for GPI-AP endocytosis (12–14). Combined with the experi-

mental evidence that the preexisting lipidic organization of

GPI-anchored proteins is actively maintained in the cell, it is

likely that these clusters are induced to form larger domains

that are endocytosed (14). These active large-scale domains

represent specialized lateral heterogeneities in the mem-

branes, similar to the hypothesized membrane rafts, enriched

in cholesterol and sphingolipids (15–17).

The absence of any of the conventional membrane de-

forming proteins (dynamin, clathrin, and caveolin, eps15)

(9), raises an important issue regarding the mechanism of

endocytosis of GPI-anchored protein containing domains, or

rafts. Most importantly, how does initiation of membrane

curvature of the desired length scale, a necessary precursor to

vesiculation, take place?

In providing a physical mechanism for raft-assisted cel-

lular budding, we need to address the question of the mech-

anics of membrane deformation at larger than molecular

scales, i.e., at mesoscopic scales. Why is membrane defor-

mation a mesoscopic scale phenomena? Consider, for exam-

ple, a typical domain of diameter 100 nm on a flat membrane,

which is subject to mechanical deformation resulting in a

bud. Such a patch would consist of ;103–104 lipids. At this

scale, membrane deformation can be analyzed using contin-

uum elasticity (18). Typical energy scales for membrane

deformation, for example, leading to a clathrin-coated bud,

are in the order of 10–20 kBT at room temperature. There-

fore, to create the required deformation, a collection of force

centers is necessary; budding is a result of a collective prop-

erty of its constituent molecules (which in general include

lipids and membrane deforming proteins). One of the aims of

our theoretical study is to identify molecular features that areSubmitted April 8, 2006, and accepted for publication October 19, 2006.
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relevant for membrane shape, and consequently to mem-

brane budding.

The specific lipid content of the raft (15–17,19) is

sphingolipids (Sph), glycosphingolipids (GlySph), and cho-

lesterol (Ch); these lipids are associated with the constitutive

trafficking of GPI-anchored proteins (10,11). In this context,

we can catalog those lipid aspects that may be relevant at the

scales of the budding membrane patch: i), the stiffness of the

long, saturated acyl chains leading to a high packing frac-

tion below the main transition, Tm, the so called lo (liquid

ordered) phase; ii), the presence of dipole moments on the

headgroup; iii), the relative area of the head to the tail; iii),

the presence of hydrogen bonding centers; and iv), lateral

and transbilayer lipid heterogeneity. Here we argue that these

molecular properties on their own, when coupled with mem-

brane deformation produce bud sizes much larger than the

typical endocytic buds.

Another molecular feature of the lipid constituents in

the raft is their chirality. Chirality is the absence of mirror

symmetry—a chiral molecule is one whose mirror image is a

different molecule albeit of the same chemical composition

(20). Indeed most molecules in the plasma membrane are

chiral. However, molecular chirality needs to be expressed at

larger scales to affect membrane shape.

Here we report that the special constitution and physical

characteristics of rafts could promote the presence of a

collective ‘‘orientation or tilt field’’ that is responsible for the

expression of molecular chirality over the scale of the raft.

This in turn leads to membrane shape deformations such as

budding and tubulation. Using reasonable parameter esti-

mates, it is possible to obtain bud sizes in the order of 50 nm

(21). We suggest that the origin of the orientational field in

rafts may be either a single molecular property such as

molecular tilt (chain tilt or headgroup orientation) (22) of

specific raft lipids, or a collective property such as the forma-

tion of chemical aggregates of the raft-associated cholesterol

and sphingolipids, or nanoscale clusters of GPI-anchored

proteins (13).

In addition to the simple spherical or tubular buds discussed

above, we find that the taxonomy of membrane shapes arising

from this interplay between orientation, chirality, and mem-

brane elasticity includes novel ‘‘flask-like’’ and ‘‘grape-like’’

structures. These shapes show a remarkable similarity to

caveolae that are permanent cellular invaginations at the

surface of most eukaryotic cells (23). Caveolae are rich in raft

lipids such as cholesterol and sphingolipids.We show that the

conditions that promote such morphologies are consistent

with the phenomenology of caveolae.

In summary, chirality, a common feature of membrane

components, in conjunction with a tilt field can be expressed

over large enough scales to induce membrane budding. Such

a mechanism can result in bud sizes comparable with typical

endocytic buds. We suggest that chirality-induced budding

may be a common theme for membrane budding in different

cellular contexts.

INADEQUACY OF CONVENTIONAL
MECHANISMS OF BUDDING OF RAFT
COMPONENTS ON THE CELL SURFACE

We discuss here the conventional physical mechanisms for

membrane budding that incorporate some features of the

specific lipid content of the raft, such as sphingolipids and

cholesterol. These mechanisms involve an interplay between

line tension, curvature elasticity, and spontaneous curvature.

In the context of rafts, the justification for line tension in-

duced budding (24–26), is based on the observation that in

artificial membranes (freely suspended mono- and bilayers

and giant unilamellar vesicles) containing a mixture of raft

components Sph/Ch/PC, sphingolipids and cholesterol phase

segregate from the rest over a wide range of temperatures

(;40�C) and composition (;1:1:1), leading to macroscopic

domains enriched in either Sph/Ch or the unsaturated PC,

separated by sharp interfaces (27,28). The domains enriched

in Sph/Ch were found to be in the liquid-ordered (lo) phase,
characterized by higher packing fraction and stiffening of the

hydrocarbon tails.

The tendency of the membrane to reduce the interfacial

energy can lead to bud formation (24–26,29). In addition,

budding can be facilitated and directed by the presence of

a spontaneous curvature, an asymmetry between the two

leaves of the bilayer, arising, for instance, because sphingo-

lipids reside only in the outer leaflet of the plasma mem-

brane. Any lateral segregation of these lipids on the outer

leaflet, will automatically lead to a transverse lipid hetero-

geneity resulting in a local spontaneous curvature of the

membrane. Local spontaneous curvature effects may also be

augmented by the presence of cytosolic membrane bound

proteins (e.g., caveolin (30)) and the cytoskeletal cortex.

Consider the simplest case of a raft domain P of area A ¼
pR2 and perimeter L on the outer leaflet of a tensionless

membrane (Fig. 1); this domain contains specific lipids that

are distinct from the rest of the membrane P9. The energy of

such a membrane can be written as,

E ¼ s0L1
k

2

Z
P

ðH � H0Þ2dA1
k9

2

Z
P9

H
2
dA; (1)

where s0 is the line tension separating regions P and P9, k
and k9 are the corresponding bend elastic moduli and H, the
local mean curvature (definitions in Appendix A). For

simplicity, we have ignored a possible Gaussian curvature

contribution. The spontaneous curvature H0 is a measure of

the asymmetry in the lipid composition of the inner and outer

leaflets in the region of the patch. We allow the conforma-

tions of the membrane to vary from a flat membrane with a

circular domain of perimeter L ¼ 2pR to a spherical bud

attached to the rest of the flat membrane via an infinitesimal

neck, keeping the area A fixed.

First, drop the spontaneous curvature H0, and let k ¼ k9.
Ignoring the negligibly small curvature energy contribution

coming from the neck, we find, as first shown in Lipowsky
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(24), that if R is greater than a threshold, the membrane forms

a spherical bud; this provides a minimum bud size rbud ¼
k/s0. To estimate its magnitude, we need to determine the

values of the elastic parameters in the raft region of the

plasma membrane. A more practical approach is to take

the values measured in artificial systems that best resemble

the lipid composition of rafts on the cell surface.

The section ‘‘Estimation of parameters’’ contains a dis-

cussion of estimates of the parameters involved in membrane

deformation, from which we take the following values: k ¼
43 10�19 J for a mixture of dimyristoylphosphatidylcholine

(DMPC) with 50 mol % cholesterol (resembling the local

concentration of cholesterol in the putative rafts) at 40�C,
and s0 � 10�13 N in giant unilamellar vesicles (GUVs)

containing unimolar mixtures of Sph/Ch/PC.

These estimates give a minimum bud size rbud ; 4 mm, at

least two orders larger than in vivo bud sizes! In fact, it could

be argued that this is an underestimate, because: a), we

expect ‘‘compatible’’ nonraft lipids to organize proximal to

the raft boundary, thus reducing s0; b), the coupling of the

plasma membrane to the cortical proteins such as actin or

other coat proteins would stiffen the membrane further; and

c), the special lo nature of the segregated raft lipids would be
accompanied by an increase in membrane thickness (31) and

an enhanced splay stiffness; both these effects would lead to

an increase in k.
The estimate of the bud size could be reduced to some

extent by transbilayer membrane asymmetries leading to a

spontaneous curvature H0 or alternatively to a relative exten-

sion of the inner membrane leaflet with respect to the outer.

Spontaneous curvature can arise from the transverse asym-

metry of raft lipids, coupling to a variety of raft proteins and

receptors (e.g., the GPI-anchored proteins), or a strong cou-

pling to cytoplasmic proteins. However, given that there are

several integral and peripheral proteins that bind onto either

side of themembrane raft (32), it is difficult to ascribe a unique

nonzero magnitude and sign to the spontaneous curvature.

Relative areal extension of the two leaves of the bilayer can

arise from incorporation of excess lipids onto one leaf, e.g.,

(33), as a result the membrane can form a high curvature bud

to accommodate this increase in relative tension.

In the context of curvature generation in caveolae that

share the same raft composition, it has been argued (30) that

the binding of the cytosolic membrane protein caveolin to

the inner leaflet membrane via cholesterol, produces bending

moments on the membrane leading to a spontaneous cur-

vature. Starting with a tension-bearing membrane, these

authors explicitly compute the deformation of a membrane

arising from a model of force distribution generated by

the binding of the caveolin oligomer to the membrane (30).

With their numerical estimates, they find that rbud � 60 nm,

comparable to the radius of caveolae. However, they do not

differentiate between spherical buds and flask-shaped in-

vaginations, nor do they account for the grape-like or tubular

morphologies that are unique features of caveolae (34).

One problem with these mechanisms and estimates is that

they largely ignore the special molecular features of the raft

constituents, namely its lo organization. Both an increase in

the local bilayer thickness (31), and an increase in the splay

energy arising from the lo nature of raft lipids should go

against the tendency to bud, since both effects lead to an

enhancement of the effective k.
Undeniably, contributions from these mechanisms are

present in any budding context that involves lateral and

transverse lipid heterogeneity. However, the numbers that

emerge suggest that these mechanisms on their own cannot

produce buds of the required dimension (50 nm) and mor-

phology (e.g., grapes and tubules). This suggests that we

need to look for additional bulk contributions to membrane

deformation energy that are specific to the lipid composition

of rafts. Moreover this mechanism should produce different

morphologies observed in the context of specific raft lipid

containing caveolae. In the following sections, we provide an

explanation of why the interplay between an orientational

field and chirality, characteristic features of raft components,

may produce membrane deformation leading to a bud (21).

We also present a detailed study of the morphology of mem-

brane shapes that are generated by these interactions.

‘‘RAFTS’’: A MEMBRANE PATCH INVOLVING
ORIENTATION AND CHIRALITY

As discussed in the Introduction, raft components can be

brought together either as a result of: i), macro phase seg-

regation; ii), micro phase segregation (a long-lived equilib-

rium fluctuation) or (what is most likely); iii), an active

organization at the cell surface (13,14). In this article we do

not discuss the mechanism by which a ‘‘raft’’ membrane

domain arises; instead we wish to understand the properties

of raft lipids that could induce membrane curvature. For

this we need to understand in greater detail, the molecular

FIGURE 1 A raft-patch P decorated by a chiral tilt texture is bounded by a

curve C on the outer membrane. The unit vectors n and t represent the

normal and tangent to the boundary C.
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specificity and the nature of interactions between the raft

components. Sphingolipids have long saturated acyl chains

(as does the GPI anchor) attached to a small sphingosine

head that has an amide group and a (zwitter-)dipole moment.

Cholesterol is a short stiff amphiphile with a hydroxyl group

at the head. Glycosphingolipids, another raft component, is a

type of sphingolipid attached to a large sugar group oriented

along the plane of the membrane. All these molecules are

strongly chiral.

Although the organization of raft components in live cells

has not yet been elucidated, several experiments on artificial

membrane systems containing ternary mixtures of Sph/Ch/

PC, over a range of temperatures, pressures, and composition

(27,28,35), suggest that membrane regions enriched in

sphingolipids and cholesterol may be identified with a

liquid-ordered (lo) phase with high packing density (27,28).

This is supported by x-ray diffraction (36) and NMR studies

(37), which suggest that the sphingolipid acyl chains in the

lo phase are stretched out, thus reducing chain-entropy and

increasing the local packing density. Atomic force micros-

copy of suspended mono-/bilayers (31), has revealed that

membrane regions identified with the lo phase have larger

membrane thickness by ;0.8 nm.

We suggest that active processes on the cell surface (14),

primarily arising from cortical actin and other coat proteins,

can give rise to a collective orientational field within the raft

domain at the cell surface. For instance, cortical actin or

coat proteins associated with raft regions can produce lateral

stresses on the membrane bilayer, and thus modulate (de-

crease) the local bilayer thickness, inducing a tilt of the stiff

acyl chains of the lo-raft lipids (S. Mayor andM. Rao, unpub-

lished data). As is customary practice in liquid crystal physics,

we denote the tilt version of the liquid-ordered phase by lo9.
Alternatively, one may assign a tilt or bond orientation field

with the cortical actin or coat proteins associated with rafts.

Whatever the origin of tilt or orientation, its presence on

the raft domain immediately implies that local shape of the

membrane should be governed by the coupling between tilt

and curvature. This is borne out from numerous theoretical

and experimental studies on artificial membranes (we pro-

vide relevant references as we go along). In addition, since

the raft constituents are chiral, the existence of a well-defined

orientational field allows this chirality to be expressed over

the scale of the raft domain. This implies that local shape of

the membrane should be governed by an interplay between

chirality, tilt, and curvature. We will show that this is indeed

the case; the interplay between chirality and orientation-

curvature coupling (21) gives rise to a variety of membrane

shapes such as buds, tubules, flasks, and grapes.

DESCRIPTION OF A MEMBRANE CONTAINING
ORIENTATION AND CHIRALITY

In this section, we describe the deformation energy of a

bilayer membrane containing a patch of raft-components

(cholesterol1sphingolipids1glycosphingolipids) of fixed

area on the outer leaflet, whereas the rest of the outer mem-

brane and the inner membrane contains the phospholipids

such as DMPC in the liquid-disordered phase. As discussed

in ‘‘Rafts: a membrane patch involving orientation and

chirality’’, the raft components can be represented by an

orientational field with chiral interactions. Thus the defor-

mation energy can be described in terms of a local orien-

tational order and the local membrane morphology. If the

orientation is associated with rigid molecular tilt, then it may

in general be described by a polar vector that takes values in

S2 (Heisenberg spin) (38). However, (free)-energy consid-

erations, a combination of hydrophobicity, van der Waals,

and ‘‘hydrophobic shielding’’, constrain the center of mass

of the molecules to lie on the two-dimensional (2D) mem-

branal surface. Further the projection of the long axis of the

molecule onto the 2D plane will have a fixed magnitude,

since deviations of the projection from this fixed value cost a

similar energy. Thus owing to strong uniaxial anisotropy,

the orientational field at every point on the raft-patch may

be described by a 2D polar vector m with unit magnitude

(XY spin) (38). We will assume that within the raft-patch, the

center of mass density r(x, y) is uniform.

The raft-components interact with each other, and with the

molecules outside the patch, both sterically (purely repul-

sive) and via short-range (e.g., van derWaals) attractive inter-

actions. Both these effects contribute to chiral interactions;

the former via the Straley picture of interlocking screws (39),

the latter via a generalization of the Van der Waals dispersion

to chiral molecules (40). In the continuum limit, these short-

range interactions can be written as the usual Frank energy

(41), modified to include the effects of chirality.

Of course, in addition to these short-range interactions

there could be long-range dipole-dipole (or higher multipole)

interactions between the tilt molecules carrying a permanent

dipole moment. The long-ranged quadrupolar (or higher

multipolar) interactions may also have independent chiral

contributions. However, in this article, we will largely ignore

the contribution of dipolar interactions, which we justify in

‘‘Estimation of parameters’’ by demonstrating that they are

smaller than the Frank energy contributions.

Though the system of rafts embedded in the cell mem-

brane may not be in thermodynamic equilibrium, we will

assume that a single raft, taken to be a stable circular region

of area A on the membrane, attains a conformation mini-

mizing the free energy of that single raft (Fig. 1). This as-

sumption tacitly entails another: variations in the size of the

raft due to molecules leaving and entering the raft, either via

diffusion or exo/endocytosis, are small compared to A. Fur-
thermore, all macroscopic quantities associated with the raft,

such as its energy, its texture, or its shape, are evaluated not

at a single instant of time but are averaged over a timescale

long compared to the timescale of variations in A, but shorter
than endocytic or domain coalescence timescales of seconds

to tens of seconds.
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Energy functional describing the raft

Recalling that the raft components are on the outer leaflet of

the cell membrane, our description of the bilayer membrane

thus starts with a membrane patch of area A on the outer

leaflet decorated by an orientation field m, the inner lipid

leaflet being structureless. We then project these variables

onto the neutral surface of the membrane (42), represented as

a mathematical surface R~ðx1; x2Þ. Each leaflet has its own

elastic stiffness; combining the sheets, the elastic stiffnesses

simply add (for this asymmetric bilayer). The raft will thus

be a (simply or multiply connected) domain with perimeter L
(which is allowed to vary) on this neutral surface. The

conformation of the domain is described by the local texture

m, the local membrane shape R~ðx1; x2Þ, and the boundary C.
(We will consistently denote 2-vectors with boldface and

3-vectors with an over-arrow.)

The effective energy-functional written in terms of m and

the local membrane curvatureKij (see Appendix A for mathe-

matical definitions) may be divided into contributions from

within the patch (P), the boundary (C), and outside the patch

(P9),

E½m;R~; C� ¼ EP½m;R~�1EC½m;R~; C�1EP9½R~�: (2)

The energy functional within the patch has contributions

from distortions of the orientation m (written as a general-

ized Frank energy), deformations of the shape of the mem-

brane (written as a Helfrich energy), and a coupling between

the curvature and the orientation.

EP½m;R~� ¼ Efrank 1Ehelrich 1Ecoupling: (3)

The form of the energy follows from general symmetry

arguments (21,43–47); here we retain terms up to quadratic

order in fields and to lowest order in spatial derivatives. The

former restriction assumes that the field values are small, the

latter says that we are interested in mesoscopic scale physics,

at the scale of the bud. To ensure that we have accounted for

all contributions to this order, we write the energy in a

covariant form (21,45). The generalized Frank energy can be

written as,

Efrank ¼
Z
P

ffiffiffi
g

p
d
2
x
k1
2
ðDivmÞ2 1 k2

2
ðCurlmÞ2

�

1 kcðDivmÞðCurlmÞ1s1ðDivmÞ1s2ðCurlmÞ
�
:

(4)

The generalized splay and bend terms are defined via the

covariant divergence (Div) and curl (Curl) of a vector fieldm
on a curved surface (Appendix A). For simplicity, we will

assume the equal-constants approximation where k1 ¼ k2 ¼
k. Note that for a 2D vector fieldm, Curlm is a pseudoscalar:

the kc and s2 terms are chiral and so are dependent on the

density of the chiral molecular component.

The membrane deformation energy is written in the usual

Helfrich form (48),

Ehelfrich ¼
Z
P

ffiffiffi
g

p
d2x c0H1

k

2
H2 1

�k

2
K

h i
; (5)

where the mean curvature H and the intrinsic (Gaussian)

curvature are the trace and determinant of the local curvature

tensor Kj
i (Appendix A). For convenience, we have assumed

that the membrane has zero bare surface tension. The cou-

pling between the texture and curvature is given by

Ecoupling ¼
Z
P

ffiffiffi
g

p
d2x bmimjKi

j 1 c�0gijm
kmiKj

k

h i
; (6)

where the last term is pseudoscalar (chiral), as indicated by

the presence of the totally antisymmetric tensor gij (Appen-
dix A), and is referred to as the Helfrich-Prost interaction

(49). In addition, there are anisotropic bending terms, such as

(m�K�K�m) and (m�K�m)2 (50,51), which can lead to the

formation of spherical buds and tubules on their own, i.e.,

without the help of chirality. We have however ignored such

contributions since they are higher order in wavenumber and

fields.

The contribution from outside the patch P9 is given by

EP9½R~� ¼
Z
P9

ffiffiffi
g

p
d
2
x

k9

2
H

2 1
�k9

2
K

� �
: (7)

In general, the elastic moduli k; �k are different in regions P
and P9. In our variational calculation we will for the most

part assume that membrane in P9 is flat (or asymptotically

flat) and that all shape variations are restricted to the region

P. We will also ignore the contribution of the Gaussian

curvature term.

The boundary energy is proportional to the perimeter of

the boundary LðCÞ, with a line tension s0,

EC ¼ s0LðCÞ: (8)

Note that the total derivative terms Div and Curl in

Slepnev and de Camilli (4) can be integrated to the boundary

via a generalized Gauss and Stokes law (52); this will give

rise to an anisotropic line tension. For simplicity we will fix

the boundary to be a circle on the flat membrane surface P9,
take only the isotropic tension, and, ignore a potential geo-

desic curvature contribution to the boundary energy.

Given the total energy functional, we obtain the optimal

conformation of the membrane shape and texture that mini-

mizes this energy, subject to two constraints. One is that the

orientationm is a unit vector—this may either be ensured by

a ‘‘hard-spin’’ version of the model (where we explicitly set

jmj ¼ 1, by suitable parameterization) or a soft-spin potential

of the form V(m) ¼ �a(m�m) 1 b(m�m)2, which makes

deviations of jmj from unity hard to obtain.

A note of caution—our restriction to terms with lowest

order in spatial derivatives is valid only when the length

scale over which the deformation occurs is large. To check

whether this restriction is valid over scales corresponding to

the bud size, we have explicitly considered the contribution

of symmetry allowed terms containing higher order spatial
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derivatives such as, (m�K�m)(Div m), Ki
iðDivmÞ, Kj

iðDim
jÞ,

mkKkim
j(Djm

i), and a chiral contribution (Ki
i )(Curl m). We

find them to be smaller than the terms retained; indeed the

effect of these terms (except the chiral term) is to renormalize

the spontaneous curvature c0 and b, favoring the formation

of a bud.

Before ending this section, we restate that the parameters

in front of the chiral terms in the energy functional, princi-

pally kc and c�0 are nonzero only when the constituent mol-

ecules are chiral. They are phenomenological parameters that

may vary with temperature, concentration, and surface pres-

sure, and may even change sign (40).

PHASE DIAGRAM: TEXTURE AND SHAPE

We take a variational approach (21) to obtain the optimal

shape and texture—this involves: i), guessing the right con-

formation; ii), expressing the conformation by a few param-

eters; and iii), obtaining the optimal values of the parameters.

Most often our guesses are based on symmetry consider-

ations and a general understanding of chiral structures; in

some cases, however, they are guided by Monte Carlo sim-

ulations. Because our aim is to understand the nature of

budding induced by chirality, we will simplify our energy

functional and focus particularly on the effects of chirality.

Without loss of generality, we may set our units of length

and energy such that k ¼ 1 and s0 ¼ 1.

Before we examine the effects of chirality on a deformable

membrane, it is instructive to study finite chiral textures in the

rigid (k / N) limit where the membrane is a flat 2D plane.

Texture on a flat membrane

In the case of a flat membrane, the form of the energy func-

tional is considerably simplified (21,53–55). Keeping only

the isotropic tension, we can rewrite the Frank energy func-

tional (4) as

Eflat ¼ L1

Z
P

1

2
ðdivm1 curlmÞ2

1 ðkc � 1ÞðdivmÞðcurlmÞ: (9)

Increasing the chiral strength, kc . 1 (in units of Frank

constants), the raft would assume a texture with a high curl

and a divergence equal and opposite to the curl. Such a

condition is satisfied by the Archimedes spiral texture (Fig. 2

a), where the lines of m diverge from the center C. In polar

coordinates (r, u) with the origin being at the center of the

raft, the spiral described by m [ (mr, mf),

m
2

r 1m
2

f ¼ 1 (10)

divm ¼ mr

r
(11)

curlm ¼ mf

r
; (12)

has constant radial and tangential components everywhere

in the raft. This spiral texture is optimized by mr ¼ 1=
ffiffiffi
2

p
,

mf ¼ �1=
ffiffiffi
2

p
, where the lines of m diverging from the

center C, subtend an angle p/4 with respect to the local radial
direction. The energy of this optimal texture is

Eflat ¼ 2pR� pðkc � 1ÞlnR
rc
1 ec; (13)

where R ¼ ffiffiffiffiffiffiffiffiffi
A=p

p
is the radius of the raft, rc and ec are the

core radius and core energy of this spiral defect. The chiral

energy density is large (and negative) in the vicinity of the

core, and falls off as r�2.

As kc increases, the texture prefers to place such high

chirality regions all over the domain. Using a Monte Carlo

simulation with simulated annealing (21,55), we showed that

a chiral tweed texture, with the above characteristic (Fig. 3),

wins over the spiral defect phase. We were then able to

parameterize this texture and calculate its energy analyti-

cally. This gives the phase diagram Fig. 4.

Texture and shape of a deformable membrane:
budding and tubulation

We revert to the energy functional (2) when the membrane is

deformable; the chiral interactions are now represented by two

terms kc and c
�
0.Before exhibitinga detailed phase diagram (21),

we provide a qualitative understanding of the effects of these

chiral terms on the shape and texture of the membrane.

FIGURE 2 (a) Chiral texture on a flat membrane, the

plane of the paper; C is the center of chirality. (b) A spher-

ical bud induced by chirality, connected to the plane P9 by
an infinitesimal neck; C1 and C2 are centers of chirality.
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Start with c�0 ¼ 0: we have just shown that the optimal

texture of a circular domain of radius R on a flat membrane

when kc . 1, is an Archimedes spiral diverging from the

center of the domain (Fig. 2 a). If the membrane is made

flexible, then the spiral can close itself on the opposite pole

of a sphere, producing two centers of chirality, C1 and C2,

instead of one (Fig. 2 b)—this conformation gains in both

bulk chiral energy (Appendix B) and line tension energy. A

spherical bud would be produced if the kc contribution is

sufficiently strong to overcome the rigidity of the membrane.

Now start with kc ¼ 0: as shown in (49) and explicitly

demonstrated in Appendix B, a sufficiently large value of c�0
would prefer to wrap the texture in a helix around a narrow

cylinder, the pitch of the helix being proportional to the

radius of the cylinder.

Thus the interplay between kc and c�0 will produce a com-

bination of spherical caps and cylinders. Appendix B contains

detailed calculations of the combined effects of kc and c�0 for
textures on prescribed surfaces such as the sphere, cylinder,

and saddle. These calculations help us in constructing general

variational shapes (obtained by patching these surfaces) and

textures (smoothly connecting the lines of m), which we

optimize to obtain a detailed phase diagram. To highlight the

effects of chirality we have ignored the spontaneous curvature

c0 of the raft. Including the effects of c0 and b (Eq. 6) would

enhance the tendency to form buds even further.

We parameterize the spherical bud by a spherical cap of

radius rbud attached to the rest of the membrane by an

infinitesimal neck of radius r0. Using the parameterization of

the texturem as given in Appendix B, we have calculated the

optimum energy (texture1shape) for c�0 ¼ 0 variationally,

Esphere ¼ 2pr0 1pk
R

rbud

� �2

�pðkc � 1Þ
Z p�u0

uc

cos
2
u

sinu
du

1 ec 1 ek; (14)

where uc ¼ rc/rbud is the angle subtended by the defect core

of radius rc at the center of the bud, and u0 ¼ r0/rbud is the
angle subtended by the neck at the center of the bud. The

contributions ek and ec represent the energies of the neck and
the defect core, respectively. Because the area of the domain

is the same, before and after, the formation of the bud, we

have,

A ¼ pR
2 ¼ 2pr

2

budð1� cos u0Þ: (15)

The chiral bulk energy kc prefers to have zero neck radius,
as seen from the variational calculation. This is because an

infinitesimal neck allows the spherical bud to have two

defects, resulting in a gain in chiral energy. Moreover, as

r0/0, the neck energy ek/0 (26,56). As we will see later,

the Helfrich-Prost contribution, c�0, reduces the energy cost

of the neck even further.

As we increase the value of c�0 the bud is stretched into a

prolate shape, with the defect drawn away from the neck. We

represent this prolate bud by a cylinder of length l capped by
two hemispheres of radius rbud on either side, one of which

joins the rest of the (flat) membrane via an infinitesimal neck.

The m texture on the cylinder is the helix described in

Appendix B, whereas them texture on the sphere is the spiral

described in Appendix B (and above). Note that the helical

FIGURE 3 (a) Close-up of the texture generated by

Monte Carlo simulation, (b) its continuum representation

by a mathematical formula. In the shaded regions div m is

positive and curl m is negative, whereas it reverses sign in

the unshaded.

FIGURE 4 Phases of a chiral tilt-texture domain on a plane: (1) uniform
phase, (2) spiral defect phase with ec ¼ 0, rc ¼ 0.005, (3) chiral tweed phase

with stripe width l* ¼ 0.01.
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lines of m on the cylinder smoothly join the spiral lines on

each hemisphere. The energy of this prolate bud is

Eprolate ¼ 2pr0 1 2pkð11 cosu0Þ

� pðkc � 1Þ
Z p�u0

uc

cos
2
u

sin u
du1 ec 1 ek

1 2prbudl
k

4r
2

bud

� c
�
0

2rbud

� �
: (16)

We have numerically obtained the optimum shape and

texture of the bud, with the constraint that the area of the bud

A[pR2 ¼ 2pr2budð11 cosu0Þ1 2prbudl; (17)

remains the same on budding. A reasonable measure of pro-

lateness of the bud is (2rbud 1 l)/2rbud; the prolateness in-

creases sharply when c�0 becomes of the order k/R (Fig. 5 b).
Note that we have taken kc and c�0 to be positive every-

where; had they been negative we would simply reflect the

optimal texture shown in Fig. 5 a on a mirror passing through

the axis of the bud.

The variational calculation just outlined produces the phase

diagram (Fig. 6), showing how a domain of size R on a flat

membrane can give rise to a spherical/prolate bud or tubule by

turning on the strength of chirality; the transitions are

discontinuous. For instance, a domain of size R ¼ 0.01

(corresponding to 10 nm) on a flat membrane can be induced

to form a spherical bud as soon as c�0 ¼ 75, for k ¼ 10 and

kc ¼ 2 (this, as we will see in the section ‘‘Caveolae: a

consequence of tilt and chirality?’’ are perfectly reasonable

estimates). Recall the lower bound rbud¼ 4 mm in the section

‘‘Inadequacy of conventional mechanisms of budding of raft

components on the cell surface’’; the tendency to bud via bulk

chirality preempts budding induced by line tension alone.

Fragmentation of a bud: maximal bud size

The phase diagram in Fig. 6, showing the discontinuous

budding transitions, holds for small values ofR.What happens

when we increase the domain size R further, keeping all other

parameters fixed? We will see that chiral interactions can

induce a large enough domain to split into multiple domains.

That anything unusual should happen for larger domains

may be gauged by the following argument (55). Consider a

chiral tilt domain of radius R on a flat membrane with k/N.

Because increasing the strength of kc beyond unity produces

a spiral defect at the center of the domain, we expect that

when kc . 1, the texture would prefer to maximize the

number of spiral defect points. One way to achieve this is for

the domain to split into multiple domains. To study the

conditions under which such breakup is favorable, we cal-

culate the energy E
ðnÞ
flat of n circular domains of equal area,

each bearing the same spiral texture and compare it to the

energy E
ð1Þ
flat of a single circular domain with the same total

area and texture. The total energy of this configuration is

E
ðnÞ
flat ¼ 2ps0

ffiffiffi
n

p
R� npðkc � 1ÞlnR=

ffiffiffi
n

p
rc

1 nec: (18)

For small values of R, a single domain E
ð1Þ
flat has the least

energy. As R increases, E
ð2Þ
flat becomes smaller than E

ð1Þ
flat:

chirality in the bulk wins over interfacial energy. As R in-

creases further, multidomain splitting is favored. This ten-

dency to split holds when kc is large enough; for a fixed value
of s0rc, there is a critical kc beyond which chirality-induced

splitting would manifest. The relevance of this analysis to the

observed domain repulsion in lipid domains on tense GUVs

consisting of two lipid components has been discussed in

Sarasij and Rao (55).

The above argument can be extended to bud splitting

when the membrane is deformable. We find that as long as

the chiral parameters kc and c
�
0 are large enough, the bud will

prefer to split into two beyond a critical size. Assuming that

the neck of the spherical bud attached to the parent

membrane is infinitesimally small, we have for the total

energy of n equal buds with the same texture,

E
ðnÞ
sphere ¼ 4pnk� pnðkc � 1Þ

Z p�uc

uc

cos
2
u

sin u
du1 2nec: (19)

This form assumes that the buds do not interact with each

other.With a large chiral strength kc � 1,wefind that for small

values of R, a single bud E
ð1Þ
sphere has the least energy. As R

increases, E
ð2Þ
sphere becomes smaller than E

ð1Þ
sphere: bulk chirality

prefers the bud to split into two, whenR. R* as seen in Fig. 7.

FIGURE 5 (a) Texture on a prolate bud, (b) measure of

bud prolateness, j ¼ 2rbud=ð2rbud1lÞ, as a function of c�0
for two different domain sizes (A) R ¼ 1 and (B) R ¼ 0.5.

The rest of the parameters are: k ¼ 10, kc ¼ 2, ec ¼ 0, rc ¼
0.005, ek ¼ 0, and r0 ¼ 0.005.
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This tendency to split has interesting consequences for the

growth of nucleating domains/buds. Consider two proximal

domains on the membrane that have grown to a size R*.
Subsequent coalescence of these domains would be pre-

vented by chirality; instead two spherical buds would emerge

from the membrane surface. This would set a maximal bud

size determined by the values of the chiral parameters. This

is consistent with the sizes of buds involved in the GPI-

anchored protein internalization pathway.

CAVEOLAE: A CONSEQUENCE OF TILT
AND CHIRALITY?

To circumvent the splitting tendency of chirality so as to

form large, stable raft domains on the membrane, we need

additional molecular mechanisms to hold the raft together.

Once this is achieved, we may ask what is the morphology of

membranes when the size of the raft domain increases

beyond R*. The spherical/prolate buds and tubular shapes

are only a subset of the energy minimizing shapes exhibited

by this model. Rather than spanning the entire shape space,

we take cues from other raft-associated structures on the cell

surface.

The surface of most mammalian cells have stable cellular

invaginations known as caveolae (34). Caveolae are rich in

cholesterol and sphingolipids (57), and other raft constitu-

ents. They are morphologically distinct: large flask-shaped

or ‘‘grape-like’’ invaginations on the plasma membrane,

with a diameter nearly an order of magnitude larger than the

size of the raft-assisted buds discussed earlier.

A defining feature of caveolae is the presence of caveolin,

coat proteins that striate the cytoplasmic surface of caveolae.

Caveolin binds to cholesterol and glycosphingolipids and is

firmly anchored to the membrane by a palmitoyl chain (Fig.

8). Caveolins oligomerize on the membrane forming the

characteristic spiral striations observed in freeze-fracture

FIGURE 6 Phase diagram showing (1) planar, (2) spherical bud, and (3)

cylindrical tubule, with kc ¼ 1.5, k ¼ 10. With these parameters, budding

due to line tension alone (see ‘‘Inadequacy of conventional mechanisms of

budding of raft components on the cell surface’’) occurs at R ¼ 10. Inset

shows the variation of the ratio a ¼ L/r with c�0 for a domain of size R ¼ 1.

FIGURE 7 Energy E(n), of a bud split into n equal parts, depends on its

total area, A¼ pR2. Here we show the n¼ 1 and 2 branches: the bud prefers

to split in two when R . R* (s0rc ¼ 1.5, ec ¼ 5, kc ¼ 17).

FIGURE 8 (a) Raft domains recruited into caveolae

are held together by the oligomerization of the

membrane bound protein, caveolin (represented by

hairpins). (b) Close-up of a part of a caveola showing

the oligomerization of caveolins (CS, cholesterol; GS,

glycosphingolipids; P, phospholipids; C, carboxyl

terminus, N, amino terminus). Horizontal lines be-

tween caveolins represent oligomerization, dashed

lines near C represent palmitoylation (59).
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images. It is likely that this ability to bind cholesterol and

form oligomers helps sequester ‘‘rafts’’ into larger structures

(58), thus stabilizing the caveolar pits (59). In our view, this

binding due to caveolin oligomerization is the additional

molecular mechanism needed to hold the raft together and

make a domain larger. This novel role for caveolin is in ad-

dition to other effects that membrane-bound caveolin might

have such as generating bending moments to curve the mem-

brane (30).

In addition to the simple spherical/prolate/tubular buds

discussed above, we indeed find that the taxonomy of mem-

brane shapes include the ‘‘flask-like’’ (Fig. 9) and ‘‘grape-

like’’ structures exhibited by caveolae. We show that these

unique morphologies are favorable under conditions of: i),

high chiral strength kc and c�0 (Fig. 10); ii), large raft area

R (Fig. 11); and iii), high bending modulus k (Fig. 12)—

conditions that are characteristically met in caveolae.

Flask shapes

Caveolar flasks are round bottomed with a distinct neck, and

so in our parameterization of the shape, we need to explicitly

include the shape and texture of the neck. At first sight it

might seem that including the neck portion would give a

prohibitively large energy contribution to the bud; however,

we will show that for high enough c�0, a neck is the favored

conformation, i.e., ek � 0.

We model the neck by patching together a saddle and a

cylinder (Fig. 9). We have described the saddle geometry in

Appendix A, and have seen that the texture favored by

chirality (Appendix B) is the one in which the lines of m at

any point bisect the right angle between the transverse and

the longitudinal sections of the saddle passing through that

point (see Fig. 15). The neck begins at the smallest cross

section of the saddle, the circle Cb of radius Rb and angle

a ¼ 0 and fans out to the maximum angle a ¼ amax, where

the radius of the cross section is Rb 1 Ra(1 � cos amax)

(Fig. 15).

A flask has two necks (Fig. 9): the first one connects the

spherical part to the cylinder and the second connects the

cylinder to the plane of the mother membrane. The spiral

texture of the first neck merges smoothly with the texture of

the cylinder on one side and with the texture of the sphere on

the other. In a like manner the texture of the second neck

merges smoothly with that of the cylinder.

The first neck subtends an angle u0 at the center of the

sphere (Fig. 9), thus a
ð1Þ
max ¼ u0; further, as the neck joins up

with the cylinder of radius RC, we have Rb
(1) ¼ RC. If RS is

the radius of the sphere then from geometry,

u0 ¼ arcsin
RC 1R

ð1Þ
a

RS 1R
ð1Þ
a

 !
: (20)

The energy of the first neck is

and its area

Að1Þ
k ¼ 2pRð1Þ

a Rð1Þ
a 1RC

� �
u0 � Rð1Þ

a sinu0

h i
: (22)

The second neck has to join the cylinder smoothly to a flat

membrane, thus a
ð2Þ
max ¼ p=2, and as before, Rb

(2) ¼ RC (Fig.

9). The domain boundary has a length 2p(Ra
(2) 1 RC). The

energy of the second neck is

e
ð1Þ
k ¼ p

2
k 11

RC

R
ð1Þ
a

1
3

2

R
ð1Þ
a

RC

1
1

2

R
ð1Þ
a

RC

 !2 !
u0 � 31 2

R
ð1Þ
a

RC

1
R

ð1Þ
a

RC

 !2 !
sinu0 1

1

4

R
ð1Þ
a

RC

31
R

ð1Þ
a

RC

 !
sin2u0 1

1

3

R
ð1Þ
a

RC

 !2

sin
3
u0

" #

� pðkc � 1ÞR
ð1Þ
a

RC

1

2
11

R
ð1Þ
a

RC

 !
u0 � 1

4
11

R
ð1Þ
a

RC

 !
sin2u0 � R

ð1Þ
a

3RC

sin
3
u0

" #

� pc�0R
ð1Þ
a 11

RC

R
ð1Þ
a

� 1

2

R
ð1Þ
a

RC

 !
u0 1

R
ð1Þ
a

RC

sin u0 � R
ð1Þ
a

4RC

sin 2u0

" #
; (21)

e
ð2Þ
k ¼ p

2
k

p

2

RC

R
ð2Þ
a

1
3p

4
� 2

� �
R

ð2Þ
a

RC

1
p

4
� 2

3

� �
R

ð2Þ
a

RC

 !2

1
p

2
� 3

 !
� pðkc � 1ÞR

ð2Þ
a

RC

p

4
1

p

4
� 1

3

� �
R

ð2Þ
a

RC

 !

� pc
�
0R

ð2Þ
a

p

2
1

p

2

RC

R
ð2Þ
a

1 1� p

4

� �Rð2Þ
a

RC

 !
1 2pðRð2Þ

a 1RCÞ; (23)
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and its area

A
ð2Þ
k ¼ 2pR

ð2Þ
a

p

2
� 1

� �
R

ð2Þ
a 1

p

2
RC

h i
: (24)

The total energy of the flask can now be written as,

Eflask ¼ e
ð2Þ
k 1 2pRCLC

k

4R
2

C

� c
�
0

2RC

� �
1 e

ð1Þ
k

1 2pkð11 cosu0Þ � pðkc � 1Þ
Z p�u0

uc

cos
2
u

sinu
du1 ec;

(25)

where LC is the length of the cylinderical part and u0 is given
by Stryer (20). We have numerically obtained the optimum

shape of the flask (i.e., the values of fRS, RC, Ra
(1), Ra

(2), LCg
that minimize Eflask), subject to the constraint of constant

total area,

A ¼ pR2 ¼ Að1Þ
k 1Að2Þ

k 1 2pR2

Sð11 cosu0Þ1 2pRCLC:

(26)

The optimal shapes fall into two broad classes (Fig. 10):

(A) a spherical bud, with no neck, i.e., LC ¼ 0, and (B) a
flask shape, with LC . 0. Every bud has Rð1Þ

a � RS and

Rð2Þ
a � RS, while every flask has Rð1Þ

a � RS and Rð2Þ
a � LC.

Therefore the necks are narrow and the shape of the flask is

almost entirely determined by the dimensions of the spheri-

cal and the cylindrical parts.

We now study how changing c�0, R, and k affect the shape

parameters of the flask. For fixed values of R, kc, and k, flask
shapes are obtained only when the chiral strength c�0 crosses a
threshold, any smaller value will produce only a bud (Fig.

10). This threshold c�0 increases with increase in kc (Fig. 11).
More interestingly, the threshold c�0 decreases with an

increase in R (Fig. 11), implying that larger (stable) domains

favor flask formation. Thus for a given kc and c�0, there is a

minimum size, Rmin, for a raft to be a flask (Fig. 12), con-

sistent with observations of caveolae supporting cells. The

transition from bud to flask is discontinuous—keeping R and

kc fixed, the length of the cylindrical part jumps sharply from

zero beyond a threshold c�0 (Fig. 10).
We comment on the dependence of the flask shape pa-

rameters on the bending stiffness k. As seen from Fig. 12, the

minimum size of a domain capable of taking the shape of a

flask, Rmin, increases with k, for fixed values of kc and c�0.
Thus a large k favors the formation of flask-shaped caveolae.

This is consistent with an expected stiffening of the caveolar

membrane with its associated bound caveolin oligomers.

As mentioned earlier, we have shown that the flask mor-

phology is favorable under conditions of: i), high chiral strength

kc and c
�
0; ii), large raft area R; and iii), high bending modulus

k—conditions that are characteristically met in caveolae.

Grapes of raft

If the area of the domain becomes sufficiently large then the

competition between kc and c�0 would produce an optimal

combination of spheres (with the lines of m bunched into

tight spirals toward the poles), and cylinders (with the lines

of m wrapped in a helical texture). This produces the grape-

like structures seen in caveolae—a string of spherical bulbs

connected by a system of tubules (Fig. 13).

We extend the shape parameterization to include spheres

(S1, S2, S3, . . .) connected to cylinders (T1, T2, T3, . . .) by
saddles (N1, N2, N3, . . .) with the whole structure joining the

rest of the membrane through a neck N0 (Fig. 13). Each

of these components has exactly the same texture as the

FIGURE 9 (a) Texture of a flask, horizontal dashed

lines mark out the two necks, (b) geometry of the neck

connecting the spherical to the cylindrical part of the

flask, (c) geometry of the neck connecting the cylin-

drical part of the flask to the rest of the membrane.

FIGURE 10 Discontinuous transition from spherical bud to flask (kc ¼ 2,

R ¼ 5). To the left of the broken line LC ¼ 0, the optimum shape is a bud.

Inset shows the optimum shapes (to scale) on either side of the transition

(dashed line).
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flask-shaped caveola. For simplicity, we take all tubules to be

of the same dimension (fLC, RCg), all bulbs to be of the same

radius (RS), and all necks (except N0) to be of the same outer

radius (Ra) and inner radius (Rb ¼ RC).

A variational calculation shows that given the values of kc
and c�0, the optimal number of bulbs and tubules in the grape-

like structures increases with the domain size R and the

stiffness k (Fig. 14). Furthermore, for fixed R and k, the
number of bulbs reduces and the tubules get longer, as c�0
increases. There is a threshold c�0 in order for the grape

structure to have any tubular part at all—a smaller c�0 leads to
LC ¼ 0 and the membrane takes the form of a necklace of

spherical buds connected by infinitely narrow necks.

ESTIMATION OF PARAMETERS

Spanning the parameter space gives a whole taxonomy of

energy-minimizing shapes; experimental comparison can

only be made by fixing the parameter values. Unfortunately

these parameter values are not known in the plasma mem-

brane; the best we can do is to obtain values determined in

artificial systems resembling the cellular context. For in-

stance, membrane deformation parameters are taken from

studies on artificial membranes with reconstituted lipids.

Frank elastic parameters are taken from estimates from liquid

crystal physics, whereas parameters related to the coupling

between the orientational field and membrane curvature

should ideally be taken from Sm-C* films.

The values of membrane elastic parameters, like the bend-

ing modulus k, spontaneous curvature c0, and the line ten-

sion s0 have been noted in the section ‘‘Inadequacy of

conventional mechanisms of budding of raft components on

the cell surface’’. Analysis of the thermal fluctuation spec-

trum of giant (20 mm diameter) quasispherical vesicles

containing a mixture of DMPC and cholesterol by phase-

contrast video microscopy (60) gives a value of k ¼ 4 3
10�19 J for 50 mol % of cholesterol (resembling the local

concentration of cholesterol in the putative rafts) at 40�C.
The value of the (global) surface tension in live cells (61) has

been estimated as g ; 10�2–10�1 pN/nm. The bending

modulus and tension in the raft environment of the cell, if

anything should be larger than this, both due to binding to

cytoskeleton and being in the lo state. The line tension of the
lipid-raft domain can be obtained via an analysis of shape

deformations of lipid domains in Langmuir monolayers (62)

or from domain shapes and sizes in phase-segregated GUVs

containing the ternary lipid mixture Sph/Chol/PC. These ex-

periments lead to an estimate of s0 ; 10�13 N for the line

tension. A more recent study (29) on giant unilamellar

vesicles in which lo domains, rich in cholesterol and

sphingolipids, coexist with liquid-disordered (ld) patches

consisting mainly of unsaturated phospholipids, has come up

with a value that is an order of magnitude larger than this.

The values of the Frank constants entering the lipid bilayer

membrane energy functional, may be obtained from the

corresponding values in bulk liquid crystals. In a cholesteric

liquid crystal, the director field n~, describing the locally

averaged molecular (long) axis, describes a helical confor-

mation about a fixed ordering axis. This helical conformation

is best imagined as a set of parallel planes, with n~ at every

point in a given plane having the same orientation, while n~at

successive planes twisting with a prescribed pitch around a

fixed axis perpendicular to the planes (41). The energy

density of this conformation is expressed by the Frank form,

FIGURE 11 Variation of flask shape parameter g ¼
RC/RS with chiral strengths kc and c

�
0. Plots show g vs.

kc for different c
�
0 (a) R¼ 5 and c�0 ¼ 40 (A), 50 (B), 60

(C); (b) R ¼ 3 and c�0 ¼ 60 (A), 70 (B), 80 (C). Rest of

the parameters are k ¼ 10, rc ¼ 0.05, ec ¼ 0.

FIGURE 12 Lines separating the bud from the flask

in the R � c�0 plane—to the left (right) of each curve is

the bud (flask), with rc ¼ 0.05 and ec ¼ 0: (a) k ¼ 10

and kc ¼ 2 (A), 5 (B), 8 (C); (b) kc ¼ 2 and k ¼ 10 (A),
20 (B), 30 (C).
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E ¼ K1

2
ðdiv n~Þ2 1K2

2
ðn~ � curl n~1 qÞ2 1K3

2
ðn~3 curl n~Þ2;

(27)

where 2p/q is the pitch of the helical conformation of n~.
Comparing the energy density of a planar tilt domain with

that of a cholesteric above, suggests the following corre-

spondence: k1 ; ‘K1, and k2 ; ‘K3, where the length scale ‘
is of the order of the thickness of the bilayer bearing the raft.

Knowing the values of the Frank constants for the bulk

cholesteric, K1 ; K2 ; K3 ; 10�11 N, and taking ‘; 1 nm,

we arrive at an estimate for the Frank coefficients in the

membrane energy functional, k1 ; k2 ; 10�20 J.

The two crucial chiral parameters kc and c�0 can also be

estimated. Note that E in Veatch and Keller (27) has a term

linear in curl n~; this chiral term is related to the parameter kc,
suggesting that kc ; ‘K2 ; 10�20 J. These values are almost

an order of magnitude larger than kBT at 30�C, and so we

may ignore the effect of thermal agitation on the ordering of

m in a raft.

The other chiral parameter is the Helfrich-Prost c�0. Clearly
the sign of c�0 is irrelevant to our discussion; if we obtain a

particular energy-minimizing conformation of the decorated

membrane with a positive value of c�0, then reversing the sign
of c�0 would only reverse the handedness of the texture on the
membrane, leaving the shape of the membrane unchanged.

The magnitude of c�0 has not been determined experimentally

for any system, including Sm-C* films. A crude upper limit

can be obtained from a theoretical estimate (53); because c�0
has dimensions of inverse length, one gets an upper bound of

order 103 (in our dimensionless units) if we take that length

to be ‘. The value of c�0 we need to form buds and tubules is

well within this bound.

With these parameter estimates, we now argue post facto

that long-ranged dipolar interactions are significantly weaker

than the Frank contributions. Sphingolipids have a dipole

moment jp~j;1 debye (22) directed roughly parallel to the

plane of the membrane and at the same level as the bridge

group (almost touching the interface of the hydrocarbon

chains and water). The strength of dipolar interactions of

neighboring sphingolipids is of the order jp~j2=a3 where

a; 1 nm is the separation of the lipid dipoles. This energy is

of order 10�22 J, as a result, dipolar interactions cannot

perturb the order imposed onm by the Frank energy. On the

other hand, GPI-anchored proteins are anionic, thus the

strength of electrical interaction is considerably enhanced

jp~jq=a2; 10�20 J for q ¼ 1 Coulomb and a � 0.8 nm. The

charged lipid would then be shielded by a dipole cloud with

each dipole pointing radially into the charge, impairing the

order of m created by the Frank energy (this charge-dipole

interaction can be made considerably weaker by the presence

of dissolved counterions).

OTHER SIMPLE TESTABLE CONSEQUENCES
OF CHIRALITY-INDUCED BUDDING

We briefly discuss some simple testable consequences of

chirality-induced budding, in addition to those described in

FIGURE 13 String of grapes attached to the mother membrane by the

neck N0 and consisting of two bulbs, each of radius RS, and two identical

tubules, each of length LC. The necks N1, N2, and N3, connecting the tubules

with the bulbs are geometrically identical.

FIGURE 14 Optimum shape of grapes with n bulbs

connected by n tubules in the kc � c�0 plane. The label
(1, 2, 3) in each panel refers to the optimum value of n,

whereas in the region marked A there is no tubule: (a)

R¼ 5, k¼ 10; (b) R¼ 5, k¼ 20; (c) R¼ 3, k¼ 10; (d)

R ¼ 3, k ¼ 20.
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earlier sections. First note that the variational shapes of the

membrane buds that we explored are not explicitly chiral.

Examples of such explicit chiral shapes are the twisted rib-

bons (46,47) and helical tubules. Observation of such shapes

in multicomponent membrane systems would immediately

imply a coupling of chirality to curvature. We are currently

extending our variational calculation to check whether such

helical tubules are energy-minimizing shapes within our

model.

We have shown that the microscale segregation of specific

lipids possessing chirality and tilt can lead to membrane

deformation such as budding or tubulation. We now ask the

converse question—can local curvature enhancement, either

via budding/tubulation or thermal/active fluctuations, result

in the recruitment of chiral/tilt molecules from the sur-

rounding membrane (63)? We answer in the affirmative.

The calculation broadly follows along the lines of Leibler

and Andelman (64). Consider a bilayer membrane composed

of two distinct kinds of lipids: a majority component

comprising (for example) DMPC in the ld phase, whereas

the minority component composed of lipids such as DPPC/

Chol (or even Sph/Chol) in the lo9 phase. Recall that we have
already introduced the lo9 phase in the section ‘‘Rafts: a

membrane patch involving orientation and chirality’’; it is

the tilt version of the lo phase, and is characterized both by

high packing fraction (and consequent chain stiffening) and

molecular tilt. We prepare the membrane in the mixed phase,

in the neighborhood of the ld-lo9 phase boundary, and ask

whether curvature deformations can induce phase segrega-

tion of the chiral/tilt component. For this we need to write the

energy functional in f, the relative concentration of the

chiral/tilt species,

where a } (T � Tc) . 0, is the deviation from the demixing

temperature. It is clear from Veatch and Keller (28) that both

the coupling of f to: i), curvature via c0, and ii), curvature via
tilt and chirality, renormalize a to negative values, inducing

phase segregation.

This curvature induced segregation can be realized by

using optical tweezers to pull tubules from GUVs made from

a mixture of appropriate lipids. Pulling a tether in the mixed

phase would induce phase segregation, with the chiral/tilt

components (lo9 phase) preferentially partitioning in the

tubule. Note that this is the opposite of what happens when

the binary lipid mixture is composed of lipids exhibiting the

lo and ld phases; in this case, too, pulling a tether in the

mixed phase induces phase segregation, however, it is the ld
phase that preferentially partitions into the tubule (65). The

width of the tubule is given by
ffiffiffiffiffiffiffiffi
k=g

p
, where k and g are the

renormalized bending modulus and tension, respectively.

Because the renormalized k and g are different in the two

phases, the width of the tubule is a good measure of which

phase partitions in the tubule.

DISCUSSION AND EXTENSION TO OTHER
CELLULAR CONTEXTS

Membrane budding in cells has been hypothesized to occur

via a variety of means. Although both specific lipids and

proteins have been reported as key players in providing the

requisite membrane deformation forces leading to budding,

there is little understanding of the physical mechanisms by

which this process occurs in cellular systems. In the context

of raft-mediated budding, associated with the internalization

of GPI-anchored proteins, we have argued that local mem-

brane deformation is a result of the special lipid character of

rafts. We have shown that conventional mechanisms that

invoke line tension, arising from lateral compositional het-

erogeneity, and spontaneous curvature, arising from bilayer

compositional asymmetry cannot account for the small size

(�50 nm radius) and the varied shapes (spheres, tubules,

flasks, and grapes) of raft-associated budding in GPI-anchored

protein endocytosis and the stable caveolae. In this article we

propose another mechanism for budding that invokes mo-

lecular features specific to raft lipids such as sphingolipids

and cholesterol, namely, tilt and chirality. We argue that

the interplay between tilt, chirality, and local membrane

curvature, can induce membrane budding. This chirality-

induced budding accounts for both the small size and the

variety of shapes exhibited by raft-associated buds and

caveolae. Indeed, the qualitative features of membrane budding

that we describe is consistent with the special characteristics

of caveolae.

One direct consequence of chirality is the tendency of

large domains to split. In our view, this has important cellu-

lar implications; large domains can only be maintained by

‘‘stitching up’’ smaller ones together. We suggest that caveolin

oligomerization and binding, in addition to its possible role

in providing membrane bending moments, may act to hold

E½f;m;R~� ¼
Z ffiffiffi

g
p

d
2
x

c

2
ð=fÞ2 1 a

2
f

2 1 c0ðfÞH1
k

2
H

2 1
�k

2
K

h in

1f
k1
2
ðDivmÞ2 1 k2

2
ðCurlmÞ2 1 kcðDivmÞðCurlmÞ1s1ðDivmÞ1s2ðCurlmÞ

� �

1f bm
i
m

j
K

i

j 1 c
�
0gijm

k
m

i
K

j

k

h i	
;

(28)
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the raft constituents together. This suggestion is a radically

new proposal for the role of coat proteins such as caveolin.

Membrane bound caveolin also provides a spontaneous cur-

vature and a larger bending stiffness k, features that favor

flask and grape-like morphologies, often associated with

caveolar structures in mammalian cells.

We point out one more phenotype that emerges natu-

rally from our model. Oligomerized and membrane-bound

caveolin is a semiflexible polymer attached to the deformable

membrane. Recent evidence for this notion comes from

filamentous structures adopted by caveolin oligomers in vitro

(58). The local tangent vector associated with this semiflex-

ible polymer will couple to the curvature in exactly the same

way as the tilt vector, and thus appear in the Hamiltonian in

exactly the same form as m, albeit with different parameter

values. This would immediately imply that the backbone of

the caveolin oligomers will trace out helical lines on the

membrane bud (akin to the lines of m). This would explain

the geometry of the striations observed in electron micros-

copy pictures of caveolae (59,67).

Thus far we have discussed the possible involvement of a

novel membrane budding mechanism involving molecular

tilt and chirality, in raft-mediated endocytosis and caveolae.

In this section we inquire whether this mechanism may also

be involved in other pathways, such as the clathrin-mediated

endocytic pathway. After all chirality and tilt are molecular

properties shared both by lipids and proteins, and so it is

conceivable that different endocytic pathways may utilize

this common theme using different molecular players.

One of the molecular players involved in the clathrin-

mediated endocytic pathway is the Epsin family of proteins,

such as Epsin I and II. Recent experiments on live cells and

reconstituted freely suspended bilayers (6) have shown the

direct involvement of Epsin in membrane curvature gener-

ation leading to budding. It was found that Epsin, a multi-

domain protein, undergoes a specific conformational change

upon binding with clathrin; this involves a long a-helix arm,

which being amphipathic lies on the plane of the inner leaflet

of the plasma membrane. We suggest that the capacity of

Epsin to induce membrane budding is related to the chirality

and tilt of this a-helix domain.

Our parameter estimates suggest that such chirality-induced

budding should be observed in membranes containing ge-

neric lipids and/or proteins as long as they can be described

by a tilt and chirality. Recall that for this mechanism to be

operative, both tilt and chirality have to be expressed over

large scales. This, as has been discussed, are features ex-

hibited in specific regions of the cell surface such as ‘‘rafts’’.

APPENDIX A: FORMULAS FOR THE
CALCULATION OF ENERGY

To be self-contained, we give here a compendium of known differential

geometric formulas, needed for the computation of the mechanical energy of

the membrane. We follow the notation of David (68).

Any point on the surface of the membrane is specified by the three-

dimensional vector R~ðx1; x2Þ, where x [ (x1, x2) forms a 2D manifold. The

tangent plane at any point on the surface is defined by the two covariant

vectors e~i ¼ @R~=@xi where i ¼ 1, 2. The unit normal to this tangent plane is

N~ ¼ e~1 3 e~2

je~1 3 e~2j; (A1)

whereas the metric tensor is

gij ¼ e~i � e~j: (A2)

With the help of the metric tensor and its inverse, obtained via the definition,

gijgjk ¼ dik (summing over repeated indices), we can convert any covariant

tensor into its contravariant form, e.g., e~i ¼ gije~j. Moreover gij is needed to

take traces and construct symmetric combinations on the curved manifold.

We will also need an antisymmetric tensor gij, defined as,

gij ¼ ðe~i 3 e~jÞ � N~; (A3)

to take determinants and construct antisymmetric combinations on the

curved manifold.

The invariant surface area element bounded by the sides dx1 and dx2, used

in Nossal (5), is dA ¼ ffiffiffi
g

p
dx1dx2, where g ¼ detgij.

The curvature tensor is defined as,

Kij ¼ N~ � @
2
R~

@x
i
@x

j ; (A4)

the trace H ¼ gijKij and the determinant K ¼ gijKilKlj of the curvature tensor

are the mean and intrinsic (Gaussian) curvatures, respectively.

The Frank terms (4) contain derivatives of scalars and vectors on the

curved manifold. We define the gradient of a scalar field f by the covariant

tensor,

Gradf ¼ @f

@xi
e~i
: (A5)

To define derivatives (divergence and curl) of a vector fieldm~ on the tangent

plane, we first decompose it into its tangent plane components

m~ ¼ mie~
i
; (A6)

and then define the covariant derivative acting on the components of this

vector field,

Dim
k ¼ @m

k

@x
i 1G

k

ijm
j
; (A7)

where Gk
ij is called the connection,

G
k

ij ¼ e~
k � @e~j

@x
i: (A8)

The divergence and curl of m~ is now defined as,

Divm~[Dim
i

(A9)

Curlm~[ g
i

jDim
j
: (A10)

Armed with these formulas, we can calculate each of the terms appearing in

the energy functional (2) for any vector field on an arbitrary prescribed sur-

face. Because any small chip off a surface can be approximated by a plane, a

sphere, a cylinder, or a saddle (52), we present explicit formulas for these

surfaces (Fig. 15):

ðiÞ Sphere R~[ ðrcos u sinf; r sin u sinf; r cosfÞ :
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g11 ¼ r2; g12 ¼ 0; g21 ¼ 0; g22 ¼ r2sin2
u (A11)

K
1

1 ¼
1

r
; K

2

1 ¼ 0; K
1

2 ¼ 0; K
2

2 ¼
1

r
(A12)

Divm~ ¼ 1

r

@mu

@u
1

1

rsinu

@mf

@f
1

cotu

r
mu (A13)

Curlm~ ¼ 1

r

@mf

@u
� 1

rsinu

@mu

@f
1

cotu

r
mf: (A14)

ðiiÞCylinder R~[ðrcosf; rsinf; zÞ :
g11 ¼ r

2
; g12 ¼ 0; g21 ¼ 0; g22 ¼ 1 (A15)

K
1

1 ¼
1

r
; K

2

1 ¼ 0; K
1

2 ¼ 0; K
2

2 ¼ 0 (A16)

Divm~ ¼ 1

r

@mf

@f
1

@mz

@z
(A17)

Curlm~ ¼ 1

r

@mz

@f
� @mf

@z
: (A18)

ðiiiÞ Saddle R~[ððRb 1Rað1� cosaÞÞcosb;
ðRb 1Rað1� cosaÞÞsinb;RasinaÞ :

g11 ¼ R
2

a; g12 ¼ 0; g21 ¼ 0; g22 ¼ R
2

b (A19)

K
1

1 ¼
1

Ra

; K
2

1 ¼ 0; K
1

2 ¼ 0; K
2

2 ¼ �cosa

Rb

(A20)

Divm~ ¼ 1

Ra

@ma

@a
1

1

Rb

@mb

@b
1

sina

Rb

ma (A21)

Curlm~ ¼ 1

Ra

@mb

@a
� 1

Rb

@ma

@b
1

sina

Rb

mb: (A22)

APPENDIX B: UNDERSTANDING THE CHIRAL
TEXTURE-SHAPE COUPLING

We will illustrate the meaning of the chiral terms in the energy functional (5)

in a few simple cases. We will see how these terms lead to textures on a

surface that can never be made to coincide with its mirror image no matter

where we place the mirror. Any small chip off a surface can be approximated

by a plane, a sphere, a cylinder, or a saddle (52). We will ignore the plane,

since any texture drawn on a plane is achiral. First note that none of these

elementary surfaces is chiral. Thus we will place the mirror so that the bare

surface (stripped of its texture,m) coincides with its reflection. Then we will

decorate the surface, looking for a texture that maximizes the contribution of

the chiral terms.

Chiral texture on a sphere

Any point on a sphere is specified by the colatitude u and longitude f (Fig.

15 A). The tangent plane at any point on it is framed by the unit vectors

tu (along the direction of increasing u and constant f) and tf (along the

direction of increasing f and constant u). The texture at any point is de-

fined by

m ¼ mutu 1mftf (B1)

m2

u 1m2

f ¼ 1: (B2)

Any mirror passing through the center will leave the sphere unchanged after

reflection; we therefore place the mirror along the arc BAC (Fig. 16) where A

is the pole (u ¼ 0). If the texture consists of great circles diverging from the

pole, mu ¼ 1, mf ¼ 0 (Fig. 16 A) or lines ‘‘parallel’’ to the equator, mu ¼ 0,

FIGURE 15 Local coordinate systems and tangent

basis on three elementary surfaces: (A) sphere, (B)

cylinder, (C) saddle.
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mf ¼ 1 (Fig. 16 B), then its mirror image coincides with itself, and so gives

no contribution to the chiral terms. However, if the texture consists of lines

obliquely cutting the circles of latitude and longitude everywhere on the

sphere (Fig. 16 C), then it is impossible to superpose its mirror image on

itself. In fact we expect the chiral term to be greatest when the lines at every

point bisect the right angle formed by the intersection of the circles of

latitude and longitude, since under these conditions the lines of the image

will deviate most strongly from the lines in the original texture (they will cut

each other at right angles).

We calculate the contribution that this texturemakes to the two chiral terms

in the energy functional (5). The Helfrich-Prost term, c�0gijm
imkKj

k ¼ 0, for

any texture on the sphere. The chiral term kc is however nonzero; taking mu

and mf to be constant, we get

kcðDivmÞðCurlmÞ ¼ kc
cotu

r

� �2

mumf; (B3)

where r is the radius of the sphere. The term vanishes when either mu or mf

vanishes (Fig. 16, A and B) and is greatest when mu ¼ mf ¼ 1=
ffiffiffi
2

p
(Fig.

16 C), in accordance with our description above.

Chiral texture on a cylinder

Any point on the cylinder is specified by its altitude z from a reference plane

perpendicular to the axis of the cylinder and by its longitude f from a

reference plane containing the axis (Fig. 15 B). The local tangent plane on

the cylinder is defined by the unit vectors tz (along increasing z, f being

constant) and tf (along increasing f, z being constant). The texture is

m ¼ mztz 1mftf (B4)

m
2

z 1m
2

f ¼ 1: (B5)

The surface is unchanged by reflection along any mirror containing the axis;

we therefore place themirror on the plane of the paper containing the axis and

the line AB on the cylinder (Fig. 17). (Note that were we to choose the mirror

plane to be perpendicular to the axis, we would arrive at the same

conclusions.). Clearly, if the texture consists of lines parallel to the axis,

mz¼ 1,mf¼ 0 (Fig. 17 A) or perpendicular to it,mz¼ 0,mf¼ 1 (Fig. 17 B),

then its mirror image coincides with itself. These textures cannot contribute to

the chiral terms. The chiral term would be greatest when the lines are inclined

to the axis at p/4, since under this condition, the lines of the image deviate

greatest from those of the original (they cut each other at right angles).

We now calculate the chiral energy terms for these textures. Taking mz

and mf to be constant, we find that kc(Div m)(Curl m) ¼ 0, whereas the

Helfrich-Prost term

c
�
0gijm

i
m

k
K

j

k ¼ c
�
0

1

r

� �
mzmf; (B6)

where r is the radius of the cylinder. This term vanishes if either component

of m vanishes (Fig. 17, A and B), and is maximum when mz ¼ mf ¼ 1=
ffiffiffi
2

p
(Fig. 17 C). Observe that the texture with equal and constant components of

m is a helix, and that the Helfrich-Prost term is inversely proportional to r.
Therefore a large value of c�0 would wrapm in a helix around a narrow tube,

the pitch of the helix being proportional to the radius of the tube. The same

effect of molecular chirality on the shape of tilted fluid bilayer membranes,

anisotropic solid membranes, and ferroelectric liquid crystals has been

described in Helfrich and Prost (49).

Chiral texture on a saddle

Like a cylinder, a saddle, too, has an axis of symmetry; we choose a plane

Pa bearing this axis and place the mirror on it (Fig. 16 C). Unlike a cylinder,
however, there is only one plane of symmetry that is perpendicular to this

axis, call it Pb. B is the point on the saddle common to Pa and Pb (Fig. 18);

the other common point, opposite to B, is on the half of the saddle not shown

in the figure. For simplicity we will assume that the lines of intersection of

the surface with Pa and Pb are circles: call them Ca and Cb, respectively.
Any point on the surface is specified by a and b, angles of rotation measured

from fixed reference points over Ca and Cb, respectively. (For instance, a ¼
0 at any point on Cb, and likewise any point on Ca has a fixed value of b.). In
Fig. 15 C we define the tangent plane constructed from ta and tb and locally
describe any texture on the saddle as

m ¼ mata 1mbtb (B7)

m
2

a 1m
2

b ¼ 1: (B8)

As before, if the texture consists of lines lying on planes passing through

the axis, ma ¼ 1, mb ¼ 0 (Fig. 18 A) or lines parallel to Pb, ma ¼ 0, mb ¼ 1

(Fig. 18 B), then they are symmetric with respect to reflection on Pa. These

FIGURE 16 Textures (solid lines) on a sphere and their reflection (dashed

lines) on a mirror that lies on the plane of the article (containing the arc

BAC). (A) Lines are great circles diverging from the pole, (B) lines are

‘‘parallel’’ to the equator, (C) lines obliquely cut circles of latitude and

longitude; the mirror image cannot be superimposed on itself. FIGURE 17 Textures (solid lines) on a cylinder and their reflection

(dashed lines) on a mirror that lies on the plane of the article (containing the

axis and the edge AB). (A) Lines parallel to the axis, (B) lines perpendicular
to the axis, (C) lines inclined to the axis; the mirror image cannot be

superimposed on itself.
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textures cannot contribute to the chiral energy. However the chiral energy

would be greatest, when the lines of m~ bisect the angle between ta and tb
(Fig. 18 C).

We now explicitly calculate the chiral energy terms for these textures. For

constant ma and mb, the Helfrich-Prost term is given by

c
�
0gijm

i
m

k
K

j

k ¼ c
�
0

1

Ra

1
cosa

Rb

� �
mamb; (B9)

where Ra and Rb are the radii of Ca and Cb, respectively. On the other hand

the chiral kc term goes as,

kcðDivmÞðCurlmÞ ¼ kc
sina

Rb

� �2

mamb: (B10)

The total chiral contribution to the energy is indeed greatest for ma ¼ mb ¼
1=

ffiffiffi
2

p
(Fig. 18 C) and is zero when either component ofm is zero (Fig. 18, A

and B).
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