534 research outputs found

    'Black British Poetry'

    Get PDF

    Virus-like particles: A flexible platform for universal influenza vaccine development

    Get PDF
    Human influenza remains a global public health threat, namely due to its evolutionary adaptability, which hinders effective prevention. Vaccination is currently the predominant tool in the prevention of infectious disease. However, current production methods for influenza vaccines are not only logistically inadequate in the face of a pandemic, but also rely on targeting two surface proteins on the influenza virus, which are prone to antigenic drift. As a consequence, a new vaccine needs to be developed for each new seasonal epidemic. Additionally, the vaccine strain needs to be selected around eight months prior to administration and can often be mismatched leaving the population unprotected. A ‘universal’ vaccine, effective irrespective of the surface proteins, would be desirable to offer cross-protectivity across strains. Tandem core virus-like particles (VLPs), expressed in methylotrophic yeast Pichia pastoris, are an exciting alternative to current manufacturing methods. VLPs, due to their inherent safety profile and advances in genetic engineering, have excellent potential both as standalone vaccines for the virus from which they are derived, or as platforms for the display of foreign antigens. The hepatitis B core antigen (HBcAg) is able to spontaneously self-assemble, forming icosahedral particles that are inherently immunogenic. Moreover, the HBcAg is capable of carrying antigen inserts in the major insertion region (MIR) which are displayed on the particle surface. In order for VLPs to be considered a viable alternative, their bioprocessing must be optimized. Currently, various issues are at play including problems with formation, solubility and immunogenicity, often clone dependent. In this work, two genetically linked HBcAg monomers, carrying different inserts in the MIR, were used to study the effects on fermentation efficiencies using two different induction strategies. Rationalizing an induction strategy would enable the development of an efficient process to produce and purify VLPs. Results indicate that increased biomass is not always synonymous with increased protein expression. Moreover, protein expression and solubility appear to be linked with the complexity of the inserts displayed on the VLP surface. The aim of this work is to improve the bioprocessing of VLPs in a microbial expression system, using tandem core technology. This proposed method is cheap and rapidly scalable, reduces the cost per dose and eliminates the long production timelines associated with current manufacturing. The very nature of VLPs and the comparable ease of production would enable this to be promoted as a platform process, for a myriad of disease targets

    Estimates of genetic parameters of distal limb fracture and superficial digital flexor tendon injury in UK Thoroughbred racehorses

    Get PDF
    A retrospective cohort study of distal limb fracture and superficial digital flexor tendon (SDFT) injury in Thoroughbred racehorses was conducted using health records generated by the British Horseracing Authority (BHA) between 2000 and 2010. After excluding records of horses that had both flat and jump racing starts, repeated records were reduced to a single binary record per horse (<i>n</i> = 66,507, 2982 sires), and the heritability of each condition was estimated using residual maximum likelihood (REML) with animal logistic regression models. Similarly, the heritability of each condition was estimated for the flat racing and jump racing populations separately. Bivariate mixed models were used to generate estimates of genetic correlations between SDFT injury and distal limb fracture. The heritability of distal limb fracture ranged from 0.21 to 0.37. The heritability of SDFT injury ranged from 0.31 to 0.34. SDFT injury and distal limb fracture were positively genetically correlated. These findings suggest that reductions in the risk of the conditions studied could be attempted using targeted breeding strategies

    Technology and the Glass Imagination: Isolation and Closeness from the Window to the Screen

    Full text link
    In computer and cell phone screens, as in 19th-century architecture, glass employs a frame to show a specific picture, and keeps us at a distance from what lies behind it. Glass\u27 dichotomies in technology (transparency and reflection, isolation and closeness) have become stronger metaphors for our experience with technology. This paper will look at the similarities between the language and metaphors created by glass in 19th-century architecture and 21st century technology, and glass\u27 role in connecting us to and alienating us from the world \u27outside.\u27 In so doing, the role of glass in the imagination and its impact on modernity will be explored through the lens of Charles Baudelaire\u27s Paris Spleen and Walter Benjamin\u27s Arcades Project. Paying due attention to the historical and psychological theories of the screen from Anne Friedberg and Sherry Turkle, and incorporating Isobel Armstrong\u27s literary and material history of glass, this paper will then explore glass\u27 impact as an instrument of technology. The unique properties of glass have impacted the future and the imagination, always transforming how we interact with the [virtual] world. Glass is now, more than ever, both connecting us to and distancing us from our surroundings
    corecore