20 research outputs found

    Tunable non-equilibrium dynamics: field quenches in spin ice

    Full text link
    We present non-equilibrium physics in spin ice as a novel setting which combines kinematic constraints, emergent topological defects, and magnetic long range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state -- a "Coulomb phase" -- whose excitations are pointlike defects -- magnetic monopoles -- in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur the exposition of which is the subject of this article. Most notably, we find reaction diffusion behaviour, slow dynamics due to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify new potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability, and the ease of probing it in experiment: with varying magnetic fields at different temperatures, geometric properties -- including even the effective dimensionality of the system -- can be varied. By monitoring magnetisation, spin correlations or zero-field Nuclear Magnetic Resonance, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics.Comment: (16 pages, 13 figures

    Decoherence in the dynamical quantum phase transition of the transverse Ising chain

    Full text link
    For the prototypical example of the Ising chain in a transverse field, we study the impact of decoherence on the sweep through a second-order quantum phase transition. Apart from the advance in the general understanding of the dynamics of quantum phase transitions, these findings are relevant for adiabatic quantum algorithms due to the similarities between them. It turns out that (in contrast to first-order transitions studied previously) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system.Comment: 4 pages, 1 figure, minor clarification

    Quantum simulator for the Ising model with electrons floating on a helium film

    Full text link
    We propose a physical setup that can be used to simulate the quantum dynamics of the Ising model with present-day technology. Our scheme consists of electrons floating on superfluid helium which interact via Coulomb forces. In the limit of low temperatures, the system will stay near the ground state where its Hamiltonian is equivalent to the Ising model and thus shows phenomena such as quantum criticality. Furthermore, the proposed design could be generalized in order to study interacting field theories (e.g., λϕ4\lambda\phi^4) and adiabatic quantum computers.Comment: 4 page

    Efficient quantum circuits for diagonal unitaries without ancillas

    Get PDF
    The accurate evaluation of diagonal unitary operators is often the most resource-intensive element of quantum algorithms such as real-space quantum simulation and Grover search. Efficient circuits have been demonstrated in some cases but generally require ancilla registers, which can dominate the qubit resources. In this paper, we point out a correspondence between Walsh functions and basis for diagonal operators that gives a simple way to construct efficient circuits for diagonal unitaries without ancillas. This correspondence reduces the problem of constructing the minimal-depth circuit within a given error tolerance, for an arbitrary diagonal unitary eif(ˆx) in the |xi basis, to that of finding the minimal-length Walsh-series approximation to the function f(x). We apply this approach to the quantum simulation of the classical Eckart barrier problem of quantum chemistry, demonstrating that high-fidelity quantum simulations can be achieved with few qubits and low depth.Chemistry and Chemical BiologyPhysic

    Decoherence in a dynamical quantum phase transition

    Full text link
    Motivated by the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grovers search algorithm, which displays a first order quantum phase transition. For site-independent and site-dependent coupling strengths as well as different operator couplings, the results show that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits). This might limit the scalability of the corresponding adiabatic quantum algorithm.Comment: 14 pages, 9 figure

    General error estimate for adiabatic quantum computing

    Full text link
    Most investigations devoted to the conditions for adiabatic quantum computing are based on the first-order correction ⟨Ψground(t)∣H˙(t)∣Ψexcited(t)⟩/ΔE2(t)≪1{\bra{\Psi_{\rm ground}(t)}\dot H(t)\ket{\Psi_{\rm excited}(t)} /\Delta E^2(t)\ll1}. However, it is demonstrated that this first-order correction does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections as well and shows that the computational error can be made exponentially small -- which facilitates significantly shorter evolution times than the above first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time TT of order of the inverse minimum energy gap ΔEmin\Delta E_{\rm min} is sufficient and necessary, i.e., T=\ord(\Delta E_{\rm min}^{-1}). For some examples, these analytical investigations are confirmed by numerical simulations. PACS: 03.67.Lx, 03.67.-a.Comment: 8 pages, 6 figures, several modification
    corecore