87 research outputs found

    Construction of a Laboratory to Measure Livestock Emissions

    Get PDF
    A facility at Iowa State University was constructed to evaluate the impact diet modification has on air emissions. The facility was designed and constructed to have the unique ability to investigate emissions from cattle, poultry and swine by incorporating interchangeable penning and watering systems. Excreta and manure volumes can be measured for group-housed animals. Gas emissions are determined by measuring airflow rates through each of the eight animal chambers and multiplying airflow by the change in contaminate concentration between the effluent and influent ventilation air for each chamber. Chambers are monitored sequentially, for 15 min each, with incoming air gas concentrations subtracted from chamber gas concentrations, providing 10-11 observations per chamber each day. Each chamber is independently heated or air conditioned based on a temperature setpoint, with air delivered from a central plenum into chamber-specific variable air volume boxes. Data acquisition is coordinated through software control, including an emergency alarm system should ventilation problems arise. Findings from the first swine study conducted in the facility indicate that this facility can discriminate between emissions from animals fed diets that are modified to reduce nutrient excretions while maintaining animal performance. A brief laying hen study followed to challenge the sensitivity of the system to small dietary changes

    Deletion of the Stress Response Gene \u3ci\u3eDDR48\u3c/i\u3e From \u3ci\u3eHistoplasma capsulatum\u3c/i\u3e Increases Sensitivity to Oxidative Stress, Increases Susceptibility to Antifungals, and Decreases Fitness In Macrophages

    Get PDF
    The stress response gene DDR48 has been characterized in Saccharomyces cerevisiae and Candida albicans to be involved in combating various cellular stressors, from oxidative agents to antifungal compounds. Surprisingly, the biological function of DDR48 has yet to be identified, though it is likely an important part of the stress response. To gain insight into its function, we characterized DDR48 in the dimorphic fungal pathogen Histoplasma capsulatum. Transcriptional analyses showed preferential expression of DDR48 in the mycelial phase. Induction of DDR48 in Histoplasma yeasts developed after treatment with various cellular stress compounds. We generated a ddr48∆ deletion mutant to further characterize DDR48 function. Loss of DDR48 alters the transcriptional profile of the oxidative stress response and membrane synthesis pathways. Treatment with ROS or antifungal compounds reduced survival of ddr48∆ yeasts compared to controls, consistent with an aberrant cellular stress response. In addition, we infected RAW 264.7 macrophages with DDR48-expressing and ddr48∆ yeasts and observed a 50% decrease in recovery of ddr48∆ yeasts compared to wild-type yeasts. Loss of DDR48 function results in numerous negative effects in Histoplasma yeasts, highlighting its role as a key player in the global sensing and response to cellular stress by fungi

    FeCo/Graphite Nanocrystals for Multi-Modality Imaging of Experimental Vascular Inflammation

    Get PDF
    BACKGROUND: FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI. METHODS AND RESULTS: Hyperlipidemic and diabetic mice underwent carotid ligation to produce a macrophage-rich vascular lesion. In situ and ex vivo fluorescence imaging were performed at 48 hours after intravenous injection of FeCo/GC conjugated to Cy5.5 (n = 8, 8 nmol of Cy5.5/mouse). Significant fluorescence signal from FeCo/GC-Cy5.5 was present in the ligated left carotid arteries, but not in the control (non-ligated) right carotid arteries or sham-operated carotid arteries (p = 0.03 for ligated vs. non-ligated). Serial in vivo 3T MRI was performed at 48 and 72 hours after intravenous FeCo/GC (n = 6, 270 µg Fe/mouse). Significant T2* signal loss from FeCo/GC was seen in ligated left carotid arteries, not in non-ligated controls (p = 0.03). Immunofluorescence staining showed colocalization of FeCo/GC and macrophages in ligated carotid arteries. CONCLUSIONS: FeCo/GC accumulates in vascular macrophages in vivo, allowing fluorescence and MR imaging. This multi-functional high-relaxivity nanoparticle platform provides a promising approach for cellular imaging of vascular inflammation

    Genetic control of chicken heterophil function in advanced intercross lines: associations with novel and with known Salmonella resistance loci and a likely mechanism for cell death in extracellular trap production

    Get PDF
    Heterophils, the avian polymorphonuclear leukocyte and the counterpart of mammalian neutrophils, generate the primary innate response to pathogens in chickens. Heterophil performance against pathogens is associated with host disease resistance, and heterophil gene expression and function are under genetic control. To characterize the genomic basis of heterophil function, heterophils from F13 advanced intercross chicken lines (broiler × Leghorn and broiler × Fayoumi) were assayed for phagocytosis and killing of Salmonella enteritidis, oxidative burst, and extracellular trap production. A whole-genome association analysis of single nucleotide polymorphisms at 57,636 loci identified genomic locations controlling these functional phenotypes. Genomic analysis revealed a significant association of extracellular trap production with the SAL1 locus and the SLC11A1 gene, which have both been previously associated with resistance to S. enteritidis. Fine mapping supports SIVA1 as a candidate gene controlling SAL1-mediated resistance and indicates that the proposed cell-death mechanism associated with extracellular trap production, ETosis, likely functions through the CD27/Siva-1-mediated apoptotic pathway. The SLC11A1 gene was also associated with phagocytosis of S. enteritidis, suggesting that the Slc11a1 protein may play an additional role in immune response beyond depleting metal ions to inhibit intracellular bacterial growth. A region of chromosome 6 with no characterized genes was also associated with extracellular trap production. Further characterization of these novel genes in chickens and other species is needed to understand their role in polymorphonuclear leukocyte function and host resistance to disease

    Evaluating a Modular Approach to Therapy for Children With Anxiety, Depression, Trauma, or Conduct Problems (MATCH) in School-Based Mental Health Care: Study Protocol for a Randomized Controlled Trial

    Get PDF
    Introduction: Schools have become a primary setting for providing mental health care to youths in the U.S. School-based interventions have proliferated, but their effects on mental health and academic outcomes remain understudied. In this study we will implement and evaluate the effects of a flexible multidiagnostic treatment called Modular Approach to Therapy for Children with Anxiety, Depression, Trauma, or Conduct Problems (MATCH) on students' mental health and academic outcomes. Methods and Analysis: This is an assessor-blind randomized controlled effectiveness trial conducted across five school districts. School clinicians are randomized to either MATCH or usual care (UC) treatment conditions. The target sample includes 168 youths (ages 7-14) referred for mental health services and presenting with elevated symptoms of anxiety, depression, trauma, and/or conduct problems. Clinicians randomly assigned to MATCH or UC treat the youths who are assigned to them through normal school referral procedures. The project will evaluate the effectiveness of MATCH compared to UC on youths' mental health and school related outcomes and assess whether changes in school outcomes are mediated by changes in youth mental health. Ethics and Dissemination: This study was approved by the Harvard University Institutional Review Board (IRB14-3365). We plan to publish the findings in peer-reviewed journals and present them at academic conferences. Clinical Trial Registration: ClinicalTrials.gov ID: NCT02877875. Registered on August 24, 2016

    Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns Findings From the Pregnancy and Childhood Epigenetics Consortium

    Get PDF
    Hypertensive disorders of pregnancy (HDP) are associated with low birth weight, shorter gestational age, and increased risk of maternal and offspring cardiovascular diseases later in life. The mechanisms involved are poorly understood, but epigenetic regulation of gene expression may play a part. We performed meta-analyses in the Pregnancy and Childhood Epigenetics Consortium to test the association between either maternal HDP (10 cohorts; n=5242 [cases=476]) or preeclampsia (3 cohorts; n=2219 [cases=135]) and epigenome-wide DNA methylation in cord blood using the Illumina HumanMethylation450 BeadChip. In models adjusted for confounders, and with Bonferroni correction, HDP and preeclampsia were associated with DNA methylation at 43 and 26 CpG sites, respectively. HDP was associated with higher methylation at 27 (63%) of the 43 sites, and across all 43 sites, the mean absolute difference in methylation was between 0.6% and 2.6%. Epigenome-wide associations of HDP with offspring DNA methylation were modestly consistent with the equivalent epigenome-wide associations of preeclampsia with offspring DNA methylation (R-2=0.26). In longitudinal analyses conducted in 1 study (n=108 HDP cases; 550 controls), there were similar changes in DNA methylation in offspring of those with and without HDP up to adolescence. Pathway analysis suggested that genes located at/near HDP-associated sites may be involved in developmental, embryogenesis, or neurological pathways. HDP is associated with offspring DNA methylation with potential relevance to development.Peer reviewe

    Implementation of a Virtual Interprofessional ICU Learning Collaborative: Successes, Challenges, and Initial Reactions From the Structured Team- Based Optimal Patient-Centered Care for Virus COVID-19 Collaborators

    Get PDF
    IMPORTANCE: Initial Society of Critical Care Medicine Discovery Viral Infection and Respiratory illness Universal Study (VIRUS) Registry analysis suggested that improvements in critical care processes offered the greatest modifiable opportunity to improve critically ill COVID-19 patient outcomes. OBJECTIVES: The Structured Team-based Optimal Patient-Centered Care for Virus COVID-19 ICU Collaborative was created to identify and speed implementation of best evidence based COVID-19 practices. DESIGN, SETTING, AND PARTICIPANTS: This 6-month project included volunteer interprofessional teams from VIRUS Registry sites, who received online training on the Checklist for Early Recognition and Treatment of Acute Illness and iNjury approach, a structured and systematic method for delivering evidence based critical care. Collaborators participated in weekly 1-hour videoconference sessions on high impact topics, monthly quality improvement (QI) coaching sessions, and received extensive additional resources for asynchronous learning. MAIN OUTCOMES AND MEASURES: Outcomes included learner engagement, satisfaction, and number of QI projects initiated by participating teams. RESULTS: Eleven of 13 initial sites participated in the Collaborative from March 2, 2021, to September 29, 2021. A total of 67 learners participated in the Collaborative, including 23 nurses, 22 physicians, 10 pharmacists, nine respiratory therapists, and three nonclinicians. Site attendance among the 11 sites in the 25 videoconference sessions ranged between 82% and 100%, with three sites providing at least one team member for 100% of sessions. The majority reported that topics matched their scope of practice (69%) and would highly recommend the program to colleagues (77%). A total of nine QI projects were initiated across three clinical domains and focused on improving adherence to established critical care practice bundles, reducing nosocomial complications, and strengthening patient- and family-centered care in the ICU. Major factors impacting successful Collaborative engagement included an engaged interprofessional team; an established culture of engagement; opportunities to benchmark performance and accelerate institutional innovation, networking, and acclaim; and ready access to data that could be leveraged for QI purposes. CONCLUSIONS AND RELEVANCE: Use of a virtual platform to establish a learning collaborative to accelerate the identification, dissemination, and implementation of critical care best practices for COVID-19 is feasible. Our experience offers important lessons for future collaborative efforts focused on improving ICU processes of care

    Enhanced Immunogenicity, Mortality Protection, and Reduced Viral Brain Invasion by Alum Adjuvant with an H5N1 Split-Virion Vaccine in the Ferret

    Get PDF
    Pre-pandemic development of an inactivated, split-virion avian influenza vaccine is challenged by the lack of pre-existing immunity and the reduced immunogenicity of some H5 hemagglutinins compared to that of seasonal influenza vaccines. Identification of an acceptable effective adjuvant is needed to improve immunogenicity of a split-virion avian influenza vaccine.No serum antibodies were detected after vaccination with unadjuvanted vaccine, whereas alum-adjuvanted vaccination induced a robust antibody response. Survival after unadjuvanted dose regimens of 30 µg, 7.5 µg and 1.9 µg (21-day intervals) was 64%, 43%, and 43%, respectively, yet survivors experienced weight loss, fever and thrombocytopenia. Survival after unadjuvanted dose regimen of 22.5 µg (28-day intervals) was 0%, suggesting important differences in intervals in this model. In contrast to unadjuvanted survivors, either dose of alum-adjuvanted vaccine resulted in 93% survival with minimal morbidity and without fever or weight loss. The rarity of brain inflammation in alum-adjuvanted survivors, compared to high levels in unadjuvanted vaccine survivors, suggested that improved protection associated with the alum adjuvant was due to markedly reduced early viral invasion of the ferret brain.Alum adjuvant significantly improves efficacy of an H5N1 split-virion vaccine in the ferret model as measured by immunogenicity, mortality, morbidity, and brain invasion

    Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns

    Get PDF
    Hypertensive disorders of pregnancy (HDP) are associated with low birth weight, shorter gestational age, and increased risk of maternal and offspring cardiovascular diseases later in life. The mechanisms involved are poorly understood, but epigenetic regulation of gene expression may play a part. We performed meta-analyses in the Pregnancy and Childhood Epigenetics Consortium to test the association between either maternal HDP (10 cohorts; n=5242 [cases=476]) or preeclampsia (3 cohorts; n=2219 [cases=135]) and epigenome-wide DNA methylation in cord blood using the Illumina HumanMethylation450 BeadChip. In models adjusted for confounders, and with Bonferroni correction, HDP and preeclampsia were associated with DNA methylation at 43 and 26 CpG sites, respectively. HDP was associated with higher methylation at 27 (63%) of the 43 sites, and across all 43 sites, the mean absolute difference in methylation was between 0.6% and 2.6%. Epigenome-wide associations of HDP with offspring DNA methylation were modestly consistent with the equivalent epigenome-wide associations of preeclampsia with offspring DNA methylation (R2=0.26). In longitudinal analyses conducted in 1 study (n=108 HDP cases; 550 controls), there were similar changes in DNA methylation in offspring of those with and without HDP up to adolescence. Pathway analysis suggested that genes located at/near HDP-associated sites may be involved in developmental, embryogenesis, or neurological pathways. HDP is associated with offspring DNA methylation with potential relevance to development
    • …
    corecore