110 research outputs found

    Far‐Red Organic Fluorophores Contain a Fluorescent Impurity

    Full text link
    Far‐red organic fluorophores commonly used in traditional and super‐resolution localization microscopy are found to contain a fluorescent impurity with green excitation and near‐red emission. This near‐red fluorescent impurity can interfere with some multicolor stochastic optical reconstruction microscopy/photoactivated localization microscopy measurements in live cells and produce subtle artifacts in chemically fixed cells. We additionally describe alternatives to avoid artifacts in super‐resolution localization microscopy. A near‐red fluorescent impurity is characterized in several commonly used far‐red fluorescent dyes. This impurity can lead to artifacts in live‐cell multicolor super‐resolution measurements, subtle artifacts in chemically fixed cells, and highlights the importance of controls in super‐resolution imaging.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108014/1/2240_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/108014/2/cphc_201402002_sm_miscellaneous_information.pd

    Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points

    Full text link
    Membranes containing a wide variety of ternary mixtures of high chain-melting temperature lipids, low chain-melting temperature lipids, and cholesterol undergo lateral phase separartion into coexisting liquid phases at a miscibility transition. When membranes are prepared from a ternary lipid mixture at a critical composition, they pass through a miscibility critical point at the transition temperature. Since the critical temperature is typically on the order of room temperature, membranes provide an unusual opportunity in which to perform a quantitative study of biophysical systems that exhibit critical phenomena in the two-dimensional Ising universality class. As a critical point is approached from either high or low temperature, the scale of fluctuations in lipid composition, set by the correlation length, diverges. In addition, as a critical point is approached from low temperature, the line tension between coexisting phases decreases to zero. Here we quantitatively evaluate the temperature dependence of line tension between liquid domains and of fluctuation correlation lengths in lipid membranes in order to extract a critical exponent, nu. We obtain nu=1.2 plus or minus 0.2, consistent with the Ising model prediction nu=1. We also evaluate the probability distributions of pixel intensities in fluoresence images of membranes. From the temperature dependence of these distributions above the critical temperature, we extract an independent critical exponent beta=0.124 plus or minus 0.03 which is consistent with the Ising prediction of beta=1/8.Comment: 22 pages, 7 figure

    Liquid general anesthetics lower critical temperatures in plasma membrane vesicles

    Full text link
    A large and diverse array of small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their affinity for a hydrophobic environment and with their potency in inhibiting certain ligand gated ion channels. Here we explore the effects that n-alcohols and other liquid anesthetics have on the two-dimensional miscibility critical point observed in cell derived giant plasma membrane vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs without strongly altering the ratio of the two liquid phases found below Tc. The magnitude of this affect is consistent across n-alcohols when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia, but not when plotted against the overall concentration in solution. At AC50 we see a 4{\deg}C downward shift in Tc, much larger than is typically seen in the main chain transition at these anesthetic concentrations. GPMV miscibility critical temperatures are also lowered to a similar extent by propofol, phenylethanol, and isopropanol when added at anesthetic concentrations, but not by tetradecanol or 2,6 diterbutylphenol, two structural analogs of general anesthetics that are hydrophobic but have no anesthetic potency. We propose that liquid general anesthetics provide an experimental tool for lowering critical temperatures in plasma membranes of intact cells, which we predict will reduce lipid-mediated heterogeneity in a way that is complimentary to increasing or decreasing cholesterol. Also, several possible implications of our results are discussed in the context of current models of anesthetic action on ligand gated ion channels.Comment: 16 pages, 6 figure

    Critical Casimir Forces in Cellular Membranes

    Full text link

    Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting

    Get PDF
    We present an analytical method to quantify clustering in super-resolution localization images of static surfaces in two dimensions. The method also describes how over-counting of labeled molecules contributes to apparent self-clustering and how the effective lateral resolution of an image can be determined. This treatment applies to clustering of proteins and lipids in membranes, where there is significant interest in using super-resolution localization techniques to probe membrane heterogeneity. When images are quantified using pair correlation functions, the magnitude of apparent clustering due to over-counting will vary inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. Over-counting does not yield apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM) and scanning electron microscopy (SEM). We find that apparent clustering of labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from over-counting of individual complexes. Thus our results indicate that these receptors are randomly distributed within the resolution and sensitivity limits of these experiments.Comment: 22 pages, 5 figure
    corecore