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Signaling is of particular importance in immune
cells, and upstream in the signalling pathway many
membrane receptors are functional only as complexes,
co-locating with particular lipid species. Work over
the last 15 years has shown that plasma membrane
lipid composition is close to a critical point of
phase separation, with evidence that cells adapt
their composition in ways that alter the proximity
to this thermodynamic point. Macrophage cells are
a key component of the innate immune system,
responsive to infections, regulating the local state
of inflammation. We investigate changes in the
plasma membrane’s proximity to the critical point,
as a response to stimulation by various pro- and
anti-inflammatory agents. Pro-inflammatory (IFN-γ,
Kdo-LipidA, LPS) perturbations induce an increase
in the transition temperature of the GMPVs; anti-
inflammatory IL4 has the opposite effect. These
changes recapitulate complex plasma membrane
composition changes, and are consistent with lipid
criticality playing a master regulatory role: being
closer to critical conditions increases membrane
protein activity.
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1. Introduction1

Macrophages are extremely versatile cells of the innate immune system able to activate and2

adapt their functionality depending on the specific milieu [1]. Following phagocytosis of material3

resulting from trauma, or pathogens, or detection of specific functional molecules, macrophages4

can change their gene regulatory state and polarize into activated states, where for example5

they produce immune effector molecules such as cytokines for intercellular communication [2–4].6

The responses manifested as a consequence of different stimulation have been classified in two7

broad activation states, based on both genetic expression profiling and phenotypic behavior: M1,8

or classically activated, macrophages have an enhanced bactericidal and tumoricidal capacity9

and produce high levels of pro-inflammatory cytokines, while M2 macrophages produce low10

levels of cytokines and have a wound-healing capacity by contributing to the production of11

collagen and extracellular matrix [1,3,5]. The stimuli that promote M1 macrophage activation12

are mainly IFN-γ, LPS and Granulocyte-macrophage colony-stimulating factor (GM-CSF). IFN-γ13

is a cytokine mainly produced by natural killer (NK) and T helper 1 (Th1) cells; signaling from14

the IFN-γ receptor (IFNGR) controls the regulation of specific genes related to the production15

of cytokine receptors, cell activation markers and adhesion molecules [1]. Lipopolysaccharides16

(LPS) are a class of molecules of the outer membrane of gram-negative bacteria, these molecules17

are recognized by the TLR4 receptor [6,7]. TLR4 activation triggers the downstream production18

of pro-inflammatory cytokines such as TNF-α and presentation of antigens [8]. In contrast,19

macrophages polarize into M2 mainly in response to IL4 and IL13 stimuli. IL4 is produced20

by T helper 2 (Th2) cells, basophils, and mast cells in response to a tissue injury and in21

presence of some fungi and parasites [3]. M2 cells are sensitive to infections, their production22

of pro-inflammatory cytokines is minimal, and their phagocytic activity is low [1,3].23

In the transduction of signals a fundamental regulatory role is thought to be played by the24

plasma membrane composition [9]. There are many examples of specific protein-lipid affinity,25

but also strong evidence of more general mechanisms such as the propensity of lipid mixtures26

to form cholesterol rich domains, or domains of a preferred thickness, which then imply a27

preferred partitioning of certain trans membrane proteins [10–12]. Any mechanism that modifies28

local recruitment of membrane proteins, in the context of an assembly step such as dimerization29

necessary for function, can therefore directly be a regulator of receptor activity. This generalises a30

well known theme in membrane biochemistry, that proteins with lipid raft affinity have a higher31

chance to interact [13]. The key structures in this study of macrophages, the TLR4 receptor and32

its co-receptor CD14, are both known to have raft affinity: CD14 is found in lipid rafts both33

before and after LPS activation, while TLR4 receptors are initially found in non-raft regions and34

then translocate to rafts after the activation [14]. It has also been shown that the use of lipid35

raft inhibitors reduces significantly the production of cytokines related to LPS activation [15].36

Moreover, lauric fatty acid seems to be responsible for the recruitment and dimerization of TLR437

into lipid rafts [16]. All together these facts strongly hint that plasma membrane composition, and38

in particular the propensity to form lipid rafts or domains, are fundamental regulators of protein39

interaction; we explore this theme with respect to activation of macrophages and the activity of40

TLR4 receptors.41

Various authors have put forward the idea that the lipid raft phenomenology is linked42

to the propensity for the lipidic component of the membrane to undergo liquid-liquid phase43

separation [12], as was observed in plasma membrane extracts [17]. Vesicles extracted from the44

plasma membrane of cells have the same characteristics of certain ternary lipid mixtures, of45

particular interest the spontaneous appearance of transient lipid domains which is a universal46

property of systems in vicinity of a critical point [17,18]. From a biological point of view, being47

poised close to a critical point could be advantageous to accelerate a whole set of membrane48

biochemistry, since the cell would require much less energy to create lipid heterogeneity.49

Modulating the lipid composition is thus a mechanism for global regulation of activity on the50

membrane [12]. Giant plasma membrane vesicles (GPMVs) allow to study the properties of the51
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Figure 1. The plasma membrane of macrophage cells is close to critical composition and changes its transition

temperature in response to signaling molecules. (A): Fluorescence microscope image of GPMVs at 37 and 3◦C.

Scalebar 5µm. (B-E): Fraction of GPMVs showing just one phase over the total of vesicles observed in function of the

temperature. The data show a sigmoidal trend and are fitted with a hyperbolic tangent from which are extracted the

transition temperature at mid height and the width of the transition. We compare the sample obtained from cells treated

with KdoLipidA (B), LPS (C), IFN-γ (E), for 12h compared to a non-treated control condition prepared in parallel. All these

“pro-inflammatory” treatments shift the transition temperature towards higher temperatures. The colored arrow at the

bottom indicates the direction of the temperature variation imposed on the GPMV samples during the imaging process.

(D): The knock-out TLR−/− cells do not vary transition temperature when stimulated with KdoLipidA (in contrast to panel

(A)), remaining the same to the unstimulated controls.

membrane lipids as isolated systems [19,20]. These vesicles are thought to maintain the protein1

and lipid diversity of the mother membrane [20,21], and at low temperatures the lipids can phase2

separate laterally into micron sized domains [17,22,23].3

GPMVs as systems to study the transition temperature of the plasma membrane have4

shown systematic dependency on growth, temperature [24] and cell cycle [25], and on the5

epithelial-mesenchymal transition in cancer cells [26], and indeed in both situations the transition6

temperature of GPMVs recapitulates broad systematic composition changes that move the cell7

composition closer or farther from the critical point. In literature there are previous studies on8

the effect on lipid composition of macrophage activation [27,28], but these are bulk assays and9

report on the changes in a huge number of lipid species, making it difficult to interpret the10

results in simple terms. The work presented here shows that these complex changes in lipidomics,11

as reported in literature [27,28], may have a simple interpretation, in terms of their effect on12

the membrane phase separation. Investigating the effects of different kinds of macrophage13

cell stimulants (LPS, KLA, IFN-γ, IL4), known to differentiate macrophages into two different14

activation states, we show opposite changes with respect to the proximity of the critical point in15

the two cell types, consistent with biological function.16

2. Materials and methods17
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(a) Cell Culture1

The immortalized BMDM cell lines were obtained from Dr. Eicke Latz (Institute of Innate2

Immunity at the University of Bonn, Bonn, Germany), and Dr. Kate Fitzgerald and Dr. Douglas3

T. Golenbock (University of Massachusetts Medical School, MA, USA). C57BL6 TLR4−/− mice4

were obtained from Dr. S.Akira (Osaka University, Osaka, Japan) [29]. iBMDM and TLR4−/−
5

iBMDM were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM; Sigma-Aldrich, MO,6

USA) supplemented with 10% (v/v) heat-inactivated Hyclone fetal calf serum (FCS; Thermo7

Scientific, UT, USA), 2mM L-glutamine (Sigma-Aldrich), 100 U/mL penicillin and streptomycin8

(Sigma-Aldrich), and 20mM HEPES (Sigma-Aldrich). Cells are cultured for at least two days and9

brought to confluence in a single 175 cm2 flask. From confluence, cells are plated in separate10

dishes. To test the effect of stimulants on the melting temperature an equal number of cells11

are plated for each condition; we use a density of about 6-7·103 cells/mm2. After 12 hours12

the culture medium is changed with (or without for the control condition) the addition of13

stimulating agents. Then, after the stimulation time, we start the GPMVs production protocol.14

Stimulation Tm (oC) Tm err (oC) σ (K) σ err (K)

IL4

12h
12h
24h
24h

12.42
12.42
10.46
14.54

0.98
0.79
0.33
1.06

3.28
3.19
3.35
5.46

0.99
0.81
0.35
1.56

UNST

18.91
14.56
15.88
18.18
14.00
13.11
15.88
16.44
14.82
14.21
16.95
16.11

0.89
0.80
0.46
0.43
0.69
0.49
0.46
0.83
0.70
1.02
0.50
0.60

5.45
5.75
4.39
4.17
5.20
4.90
4.39
4.28
4.23
5.31
6.79
8.25

1.57
1.24
0.61
0.56
0.99
0.62
0.61
1.03
1.31
1.44
0.85
1.12

IFN 12h
20.38
19.04
18.81

0.99
0.87
0.45

6.79
6.73
5.09

1.97
1.51
0.78

LPS 12h

20.15
18.77
18.36
15.74
21.33
16.35

0.20
0.89
0.61
0.93
0.41
0.74

3.84
7.12
4.84
7.50
4.95
6.27

0.30
1.63
1.03
1.59
0.72
1.51

KLA 12h
15.93
25.93
15.63

0.88
0.90
1.00

6.35
6.02
7.60

1.43
1.68
1.70

TLR4−/− UNST 16.48 0.68 4.22 1.06

TLR4−/− KLA 15.43 0.93 4.84 1.38

Table 1. Summary of the numerical values of the miscibility temperature and transition width obtained fitting the data with

the empirical function f(T ) =A [tanh ((T − Tm)/σ) + 1] + C.
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Figure 2. Anti-inflammatory treatment changes the melting temperature in opposite direction compared to pro-

inflammatory stimuli, consistent with changes in the composition of the membrane away from the critical point.

The data show the fraction of uniform GPMVs as the temperature of the sample is varied. The two curves correspond to

24 hours of IL4 stimulation and to unstimulated conditions. TUNST = (13.11 ± 0.49)◦C, TIL4 = (10.46 ± 0.33)◦C.

Cell stimulating agents are used at the following concentrations and with the following timings:1

IFN-γ 20 ng/ml (PeproTech) for 12 hours; LPS from Salmonella Typhimurium 10 ng/ml (Enzo2

Life Sciences) for 12 hours; Kdo-LipidA 100 ng/ml (KLA, Avanti Polar Lipids) for 12 hours; IL-3

4 20 ng/ml (PeproTech) for 24 hours. These doses where chosen according to previous work on4

M1/M2 macrophage differentiation [30,31] [32].5

To measure the Tm vs cell density dependency, density was measured in two different ways. For6

some experiments, images of the culture were acquired with a low magnification objective and7

the density estimated by counting cells from the image and then dividing their number by the8

field of view area. The same dish was then used to produce GPMVs immediately after. Otherwise9

for each density we had twin dishes, one was used to count the cells with the hemocytometer,10

whilst the other was used to produce GPMVs. To check the effect of stimulation on growth rate,11

an equal number of cells were plated in a multi-well then, for each condition (control, IL4, LPS);12

cells where counted with the hemocytometer after cell adhesion (0h), then stimulated, according13

to previously specified concentrations, and counted after 12h. Cells where initially plated to have14

about 6-7·103 cells/mm2 at 0h.15

(b) GPMVs production16

The procedure for membrane labeling and GPMVs production follows the protocols in [33]17

and [34]. The cells are gently washed twice with PBS, then DiI-C12(3) (Life Technologies) dye18

solution 50µg/ml in PBS is added and left on ice for 10 minutes to allow incorporation into the19

membrane. Then the cells are washed five times with PBS and twice with GPMV buffer. GPMV20

buffer is formed by 10mM HEPES, 150mM NaCl, 2mMCaCl2, the pH is adjusted to 7.4 with HCl21

or NaOH. Lastly the vesiculating agent is added and the cells are left in the incubator for 1.5 hours22

at 37◦C. 20µl of vesiculating agent (2mM DTT, 25mM PFA) is used for each ml of GPMV buffer.23

The medium is gently harvested and transferred into a falcon tube. The sample is left at 37◦C24

enough to let the blebs deposit on the bottom of the tube: for a volume of 4 ml, 24 hours are25

enough for the whole sample to sediment.26
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Figure 3. Pro- and anti-inflammatory treatments affect the transition temperature systematically. The scatter in the

absolute transition temperature (particularly notable in the unstimulated UNST cells) is reduced significantly comparing

with same-day unstimulated controls. (A): Fitted transition temperatures of vesicles produced by macrophage cells treated

with IL4, IFN-γ, LPS or Kdo-LipidA. Each small data marker comes from an experiment with between 300 and 600

vesicles. The large markers indicate the average in each distribution, weighted with the errors on Tm. (B): Temperature

difference of each stimulation experiment with its control condition. From one-way analysis of variance (ANOVA) we

obtained the distributions differences to be statistically significant with * p<0.1, ** p<0.05, *** p<0.005.

(c) Isolation of Lipids, and Gel-assisted vesicles formation1

For the lipids isolation procedure we followed the Bligh and Dyer method [35]: 1 ml of GPMVs2

sample is collected and moved to a vial. Then are added 3.75 ml of 1:2 chloroform and methanol3

mixture, 1.25 ml of chloroform and 1.25 ml of distilled water. After each step the solution is4

vortexed for 1 minute. At this stage the GPMVs burst and the components dissolve in the solution.5

The mixture is then centrifuged at 1000 RPM for 5 minutes. This makes the chloroform/methanol6

fraction deposit at the bottom of the tube, together with the lipids, while the aqueous and7

water soluble component is isolated at the top. Proteins are preferentially located at the interface8

between the two phases. The bottom phase is then collected and left under vacuum to let the9

solvents evaporate. Finally lipids are re-dissolved in 100µl of chloroform.10

The vesicles are produced through the gel-assisted method as described in [36]: 200µl of 5%11

(weight/weight) PVA solution is spread on a microscope coverslip with the help of a spincoater12

and then left to dry in an oven at 50◦C for 30 minutes. Lipids dissolved in 100µl of chloroform are13

then spread on PVA gel. A chamber is formed with the help of a spacer and a second coverslip14

and filled with a solution of sucrose. After 30 minutes the vesicles are collected and diluted in15

glucose solution to allow vesicle sedimentation.16

(d) Imaging17

The samples are imaged on a Nikon Eclipse Ti-E inverted epifluorescence microscope using a18

Nikon PLAN APO 40× 0.95 N.A. dry objective and a IIDC Point Grey Research Grasshopper-19

3 camera. The perfect focus system (Nikon) maintains the sample in focus even during thermal20

shifts. The temperature of the sample is controlled with a home-made computer-controlled Peltier21

device. A thermocouple is placed in direct contact with the sample chamber. In each position a22

z-stack of 8 images is acquired, spanning across a range similar to the bleb size. The temperature23

is decreased across the whole sample with a ramp from 37 to 3◦C in steps of 2◦C; at each step24

the temperature is let to equilibrate for 15 seconds. The abundance of GPMVs produced can vary25

from cells prepared in different days, but usually from a dish of 5.5 cm diameter with confluent26

cells it is possible to produce blebs for at least 2 experiments. With the quantities described above,27

we are able to image up to 100-200 blebs in each field of view.28
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(e) Software processing1

A custom Matlab software pipeline has been developed to automatically detect the position and2

radius of the GPMVs in the images. It uses the Hough transform to detect circular features. Then3

with the help of a graphical user interface the blebs are shown to the user one at the time, the4

user can interactively scroll the z-stack and decide if the bleb shows (a) a single phase, (b) phase5

coexistence or (c) unclear phenotype. The software randomly picks the vesicle to show, from the6

database of all the temperatures, i.e. in this stage the information about the temperature is kept7

hidden to the user, so that the decision process (assigning the type a/b/c) is unbiased.8

3. Results9

Following established protocols, GPMVs are produced from macrophages using PFA and DTT.10

The sample is observed with an optical microscope in a temperature controlled stage. The11

temperature is lowered from 37 to 3◦C in steps of 2◦C. At high temperatures all the vesicles show12

a uniform phase. At around 12-22◦C phase separation domains start to appear in some GPMVs,13

and at low temperatures most of the GPMVs are phase separated (Figure 1 A). Approaching the14

transition temperature from below, the contours of the phase separation domains are increasingly15

less smooth, and become progressively rough and fragmented until the two phases are completely16

mixed (see supplementary Figure S1). Similar image sequences where shown in papers where17

other aspects criticality were tested directly [17]. This morphology of domains with temperature18

suggests that the GPMVs from macrophages have compositions close to critical. For each19

temperature, we calculate the fraction f(T ) of GPMVs which show uniform phase or phase20

separation. Before producing GPMVs, macrophages are stimulated with one of IFN, LPS or KLA21

for 12 hours to induce pro-inflammatory response. The effects of LPS stimulation on IBMDMs22

has been tested and characterized in detail of the NF-κB pathway in our previous study [37],23

where cell lines with fluorescent markers were used to measure NF-κB translocation, and TNFα24

promoter activation as a downstream effect. In each data set (Figure 1 B-E ) we compare the25

stimulated condition with its unstimulated control data set, since we noticed (as has been already26

reported in different cell types [24,34]) a significant variability in the transition temperature of27

independent repeats; in contrast, the transition temperatures of GPMVs from the same cultures,28

even split into separate dishes, are tightly distributed.29

The transition temperature Tm is obtained by fitting the f(T ) data with an empirical sigmoidal30

curve:31

f(T ) =A

[
tanh

(
T − Tm

σ

)
+ 1

]
+ C, (3.1)

where Tm and σ are the most interesting parameters to describe the mean and the cell-to-32

cell variability (GPMVs originate from individual cells) in the transition temperature of the33

population. Error bars are associated with data points by randomly separating the measurements34

for a given temperature into three groups, and treating these as independent data sets.35

Figure 1 B shows the effect of the cell stimulation with KLA for 12 hours. The comparison36

with the control condition shows a shift of 4.5◦C in the GPMVs transition temperature to higher37

temperatures. As expected, LPS and KLA stimulation produce similar effects (see Figure 1 B-38

C). Indeed Kdo-LipidA is the active sub-unit of the LPS molecule which is recognized by the39

TLR4 trans-membrane receptor [6]. Notice that the comparison between LPS and KLA has to40

remain qualitative since there isn’t a first-principles way to correlate the doses, except for the41

effects on activating cells. Both doses employed here are known to be able to saturate the cell42

response, for example in terms of TNFα production [28,37,38]. As a control, repeating the same43

experiment of KLA stimulation, this time on TLR4−/− macrophage cells, we obtained compatible44

transition trends (Figure 1 D) between the stimulated and unstimulated condition. The absence of45

a lipid change in the cells without receptor strongly suggests that the observed phase transition46

temperature shift is originated from the metabolic change as a downstream effect, and not by a47

direct membrane perturbation by the ligand. We then stimulated cells with IFN-γ, known, like48
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LPS, to have pro-inflammatory effects [1], and obtained the same qualitative effect on the plasma1

membrane transition temperature (Figure 1 E).2

Since all the experiments with the “classically activated” conditions were showing a consistent3

shift in the same direction, we decided to stimulate the cells with interleukin-4 (IL4) which4

is known to induce a different type of differentiation [3]. Macrophages treated with IL4 have5

different phenotypes and markers compared to the M1, and a different role in the immune6

response: they don’t produce pro-inflammatory cytokines, but suppress destructive immunity,7

and are involved for example in wound healing response [3]. IL4 is also known to induce8

polarization on our same cell line (iBMDM) [39]. The curves in Figure 2 correspond to the9

control condition and to 24 hours of IL-4 stimulation. Also in this case the stimulation produces10

a temperature shift, but in contrast to the "classically activated” cells, in this case the Tm shifts11

towards lower temperatures.12

Collecting together all the Tm values from different stimulation experiments (see Figure 3 A)13

we can see how the IL4 data and the IFN-γ/LPS/KLA data are in two separate temperature14

ranges, with no data overlapping, while the values from the unstimulated experiments have15

a much wider range. Statistical analysis confirms the distributions to be significantly different16

(p<0.05) for almost all of the conditions. Calculating the temperature differences Tstim - Tunstim17

(i.e. comparing with same day controls), the temperature shifts tighten (Figure 3 B) and show18

very consistent behaviors: the IL4 data points are all negative, whereas the others are all19

positive. Similar temperature shifts, of about 2-4 ◦C, have also been found when comparing20

melting temperatures of GPMVs from human mesenchymal stem cells (MSCs) differentiated into21

osteoblasts or adipocytes. Also in this case the plasma membrane lipidic composition is thought22

to play a key role into tuning lineage specification [40].23

We then investigated cell density as one of the possible causes for the large variability of Tm24

in the control condition. The effectiveness of intracellular communication indeed depends on the25

cell density, and can be conveyed through both mechanical or chemical interaction [41–43]. A26

set of careful experiments (see supplementary figure S2) shows a linear trend of the miscibility27

temperature as a function of the cell density, with the higher densities inducing a shift in28

the Tm in the same direction as the IL4 activated samples. A similar density effect has been29

observed in similar experimental conditions for other cell types [24]. We also found that LPS30

stimulation induces differences in the population growth rate, which complicates comparison31

between controls if one wants the cell density to match. Putting together the cell density assay32

with the measurement of cell growth, we found that with our cell growth protocol the difference33

in densities between treated and control conditions can lead to an effect of on only about 0.5◦C of34

the 2◦C shifts measured for Tm (see supplementary figure S2 B) .35

The high quality imaging allowed us to investigate also the shape of the phase separation36

domains appearing in blebs at low temperatures. Some of the domains indeed appear to have an37

irregular rigid shape similar to a gel phase domain, while others look more rounded like in the38

situation of liquid-liquid coexistence. With the help of a graphical user interface that shows a 3-439

frames time sequence of the vesicle, GPMVs with irregular domains where identified as the ones40

presenting rigid and not rounded dark regions (see supplementary figure S5). The appearance41

of gel-looking domains on GPMVs has already been reported [24], but this is the first attempt42

for a quantification of the phenomenon. Three sets of data in different conditions are shown in43

Figure 4. In all the cases, in spite of the noise, the fraction of irregular domains over the total44

of phase separated GPMVs has a clear growth at low temperatures, reaching about 0.4 at 3◦C.45

On the other hand we don’t see any significant difference in these trends comparing different46

stimulation conditions suggesting that they might not play a critical role in the cell activation47

and differentiation. In the event that these irregular domains could be confirmed as gel domains,48

this kind of analysis would provide an additional piece of information on the phase diagram of49

the biological membrane lipid mixture (on which we still have very incomplete knowledge) and50

might be particularly important in cell biology regulation involving cholesterol [44].51
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Figure 4. At very low temperatures, irregular shaped domains are observed and attributed to a gel phase. (A) The

fraction of GPMVs with irregular domains (over the total of phase separated GPMVs) increases at low temperatures. This

fraction grows below Tm, as can be seen comparing in (B) the ‘conventional’ data on liquid-liquid phase separation for

the three conditions indicated in the legend. See microscopy images in Supplementary Figure S5.

The experiments described so far provide evidence that the composition of the plasma1

membrane is regulated according to the external milieu, but we still don’t know if the phase2

separation phenomenon is lipid driven or if the proteins have any role in the formation of3

lipid compartmentalization. To address this, we performed an important and seldom considered4

control: comparing the melting temperature of GPMVs with the same sample after a lipid5

purification process. A similar experiment has been pioneered by Dietrich et all. [45]. The GPMVs6

sample was divided in two aliquots, and one of them was dissolved, purified and the vesicles7

re-formed trough the gel-assisted formation technique, as described in the methods section. The8

purified GPMVs produced with this protocol are very few compared with the control sample9

moreover it is easier to find them clumped together and are on average smaller. This makes the10

recognition of phase separation domains more difficult and prone to errors. Nevertheless, as the11

standard GPMVs sample, also the purified GPMVs show phase separation at low temperatures12

as well as a very similar phase transition curve (see Supplementary Figure S6 and Supplementary13

Figure S7). This means that the phase separation phenomenon on GPMVs is lipid driven and that14

the miscibility temperature is mostly unperturbed by membrane proteins. It is worth remarking15

here that this experiment has to be interpreted as a qualitative result since we don’t have proof16

that the lipid mixture is preserved identical after the purification process, moreover in the17

reconstituted vesicles we would have lost any bilayer asymmetry possibly maintained in the18

GPMVs.19

4. Discussion20

It is well known that the plasma membrane is not just a passive support for activity by membrane21

proteins, and here we have developed the theme that the property of lipids to phase segregate22

relates to protein interactions [12,46]. GPMVs are an extremely useful system to understand this23

aspect of plasma membranes because they maintain the composition of the original membrane,24

but they can be studied as an isolated structure and subjected to stringent controls. Our25
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results add to the body of evidence that proximity to the critical point for phase separation1

can be a global regulator favoring activity. For the specific case of macrophage cell activation2

our results are consistent with previous findings that TLR4 receptor oligomerization takes3

place in raft domains [14]. Indeed melting temperatures closer to the physiological temperature4

produce bigger and longer lasting fluctuations in the spontaneous domain formation with a5

higher chance for protein interaction. Oligomerization of TLR4 would be further promoted as a6

positive feedback loop, as well as promotion of oligomerization of any other membrane receptor7

that partitions preferentially into lipid domains. These mechanisms would reinforce signaling8

cascades and the commitment of macrophages to an activated state.9

(a) Effect of stimulation on plasma membrane transition temperature10

We have seen how treatment of macrophages with different stimulating agents affects the melting11

temperature of GPMVs. All the stimulants used (IFN-γ, LPS, KLA, and IL4) induced a shift of12

few degrees compared to the control condition, meaning that in all the cases the membrane13

composition has changed as a consequence of the activation of specific signaling pathways.14

Moreover, IFN-γ, LPS and KLA increased the transition temperature (Tm), whereas IL4 had15

the opposite effect decreasing Tm. Given that the first three stimulants can be connected to the16

activation into the M1 state in macrophages, whereas IL4 is responsible for the differentiation17

into the M2 state, this result sheds new light on the importance of plasma membrane composition18

in the immune response, and suggests new ways in which lipid composition may be involved in19

the regulation of the host defense strategy.20

From the point of view of the membrane composition, if the melting temperature increases21

(coming closer to physiological temperature) it means that spontaneous lipid domains are longer22

lived and larger, so that membrane components can partition more strongly; also, the energy23

cost to recruit a particular lipid micro-environment around a protein is reduced [46]. It has been24

calculated that due to this universal phenomenon, the proximity to critical point, spontaneous25

lipid domains exist at sizes of around 22 nm for GPMVs from RBL cells [17]. This argument26

considers the dimension of the correlation length ξ at a physiological temperature (T = 37◦C), and27

experiments that measured Tm, then using the expression ξ = ξoTm/(T − Tm) [18]. This same28

argument can now be extended, in light of the temperature shifts presented here and assuming,29

as we show from domain morphology, that the composition of GPMVs from macrophages is close30

to a critical point. Keeping the same value of ξo from [17] (because this is a quantity liked to the31

size of the lipid) we can estimate the effect of an increase in Tm from Tm M1 = 13 to Tm M2 =32

20 ◦C (as from figure 3). This results in an increase of the correlation length of the order of 40%33

(from ξM1 = 12 to ξM2 = 17 nm). We expect this to have effect on confinement of proteins and34

their local concentration. In the particular system here we can expect this to affect the balance of35

dimerization in membrane receptors (TLR4 itself, hence positive feedback) and hence regulate a36

variety of signaling pathways that move the macrophage to the committed activate state [47,48].37

The arguments on the changing proximity to the critical point are based on the temperature shifts,38

which are well defined and consistent over the experiments; the absolute temperatures, however,39

may change with cell density and have a day-to-day variability (see supplementary figure S4).40

(b) Speculative correlation between membrane composition and receptor41

activity42

We suggest here a possible correlation between the role of the cell in the immune defense and43

the changes in its membrane composition. One can imagine that these cells, depending on their44

activation state, regulate their lipid composition in such a way to tune the proximity to the critical45

point, and hence in turn the typical dimension and lifetime of spontaneous lipid domains, in46

order to be more or less reactive towards external stimuli. An M1 cell would have bigger and47

more long-lasting lipid domains, leading to increased activity of TLR4 receptors, which have raft48
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affinity [14,49–51] (e.g. by increased recruitment to the membrane, and increased dimerization), to1

induce a faster and stronger inflammatory response with consequent production of inflammatory2

cytokines. In contrast, in M2 cells the activation of the TLR4 to NF-κB pathway would be3

down-regulated through the lipid composition effect. An important element in support of this4

hypothesis is the reported increased sensitivity to LPS after IFN-γ treatment, both in mice [52]5

and in macrophages in vitro [53], where a 66% increase of the LPS binding efficiency has been6

measured. In general activation of TLRs can induce long term changes in the way a cell responds7

to further stimulation with TLR ligands including sensitization or tolerance [54].8

(c) Effect of cell density on Tm9

To investigate the cause of the Tm day-to-day variation, the effect of cell density was tested. The10

results show that denser populations induce a lower Tm in GPMVs. The same experiment has11

been very recently performed on rat basophilic leukemia cells (RBL) [24] with the same outcome,12

the authors suggesting that dense populations could have different physical membrane properties13

to be able to sense and communicate with touching cells [55].14

Regarding macrophages, one could relate this result with the shift given by the different15

kind of stimulations, venturing a picture in which the overcrowded populations have some16

common behavior with M2 cells. Our hypothesis is that cell density indirectly induces a17

decrease in Tm, perhaps by triggering the production of cytokines with the same effect of18

IL4. This idea is supported by a study in which M1/M2-like differentiation was induced by19

the population density [56]. Moreover BMDMs from high density cultures secrete less pro-20

inflammatory cytokines, have lower phagocytic ability, and the number of cells showing typical21

M2 membrane markers like CD11c and Ly-6CLy-6G increases [56]. In this picture, the crowded22

populations, with no need to further recruit cells and promote additional inflammation against23

possible infections, diminish their cytokine production, thus acting more like M2 cells.24

To test the hypothesis of the interaction through cytokines, we performed an experiment25

where the medium was periodically changed every 2 hours. The "washed" sample shows a26

higher Tm compared to the control, where cytokines would be accumulating in the medium,27

see Supplementary Figure S3. This is compatible with a scenario in which the control condition is28

affected by an accumulation of M2-inducing cytokines such as IL4.29

Even though the density has been proven to be an important factor in the day-to-day30

variability in the Tm of unstimulated macrophages, this is not enough to fully explain the31

variability between independent repeats, indeed just keeping the cells in separate cultures is32

enough to produce some variability (Supplementary Figure S4).33

5. Conclusions34

The biological question addressed here concerns macrophage cells, which we conditioned via35

pro- and anti-inflammatory stimuli, before extracting GPMV and measuring their phase transition36

temperatures. From the morphology of domains, it is clear that phase separation happens in the37

proximity of a critical point (second order transition). Considering all the transition temperatures38

together, we get a very consistent picture: transition temperatures following IL4, as opposed39

to IFN-γ/LPS/KLA treatment, form two non-overlapping intervals (respectively at 10-15◦C40

and 15-25◦C). The absolute temperature changes induced by stimulation are always around41

2◦C compared to control. We have described a physical mechanism that can underpin this42

correlation between the immune response role of macrophage cells and the lipid composition43

of their plasma membranes, where signaling activation initiates, as part of an amplification of44

response towards cell differentiation (to an activated, inflammed state). Moreover, for the first45

time, albeit in preliminary fashion, we carried out experiments on vesicles reconstructed from46

purely the lipid fraction of GPMV from the plasma membrane of macrophages. We observed their47

phase behaviour, comparing it to the GPMV. The reconstructed vesicles show phase separation48

apparently the same as the GPMV. The fact that separation is unaffected by the extraction of49
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proteins means the lipids are undisputed key regulators of phase separation phenomena in the1

plasma membrane. Also for the first time, we quantified the fraction of irregular domains on2

GPMVs, which are a gel phase. We observed an increase of these at low temperatures. Much3

remains to be discovered within the ‘critical lipidomics’ paradigm, specifically direct experiments4

are becoming possible thanks to super resolution approaches [4,11,12], probing membrane protein5

copy numbers and states of aggregation and how these are affected by the proximity to lipid6

mixture critical points.7
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