27 research outputs found

    Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus

    Get PDF
    Deep brain stimulation (DBS) of the fornix has gained interest as a potential therapy for advanced treatment-resistant dementia, yet the mechanism of action remains widely unknown. Previously, we have reported beneficial memory effects of fornix DBS in a scopolamine-induced rat model of dementia, which is dependent on various brain structures including hippocampus. To elucidate mechanisms of action of fornix DBS with regard to memory restoration, we performed c-Fos immunohistochemistry in the hippocampus. We found that fornix DBS induced a selective activation of cells in the CA1 and CA3 subfields of the dorsal hippocampus. In addition, hippocampal neurotransmitter levels were measured using microdialysis before, during and after 60 min of fornix DBS in a next experiment. We observed a substantial increase in the levels of extracellular hippocampal acetylcholine, which peaked 20 min after stimulus onset. Interestingly, hippocampal glutamate levels did not change compared to baseline. Therefore, our findings provide first experimental evidence that fornix DBS activates the hippocampus and induces the release of acetylcholine in this region

    Description, Host-specificity, and Strain Selectivity of the Dinoflagellate Parasite Parvilucifera sinerae sp.nov. (Perkinsozoa)

    Get PDF
    17 pages, 7 figures, 2 tablesA new species of parasite, Parvilucifera sinerae sp. nov., isolated froma bloomof the toxic Dinoflagellate Alexandrium minutum in the harbor of Arenys de Mar (Mediterranean Sea, Spain), is described. This species is morphologically, behaviourally, and genetically (18S rDNA sequence) different from Parvilucifera infectans, until now the only species of the genus Parvilucifera to be genetically analyzed. Sequence análisis of the 18S ribosomal DNA supported P. Sinerae as a new species placed within the Perkinsozoa and close to P. infectans. Data on the seasonal occurrence of P. sinerae, its infective rates in natural and laboratory cultures, and intra-species strain-specific Resistance are presented. Life-cycle studies in field simples showed that the dinoflagellate resting zygote (restingcyst) was resistant to infection, but the mobile zygote (planozygote) orpelli clestage (temporary cyst) became infected. The effects of Light and salinity level son the growth of P. sinerae were examined, and the results showed that low salinity levels promote both sporangial germination and higher rates of infection. Our findings on this newly described parasite point to a complex host—parasite interaction and provide valuable information that leads to a reconsideration of the biological strategy to control dinoflagellate blooms by jeans of intentional parasitic infectionsThis research was funded by the EU Project SEED (GOCE-CT-2005-003875). R.I. Figueroa work is supported by a I3P contract and E. Garcés’ work is supported by a Ramon y Cajal grant, both from the Spanish Ministry of Education and SciencePeer reviewe

    Electrical stimulation of the fornix for the treatment of brain diseases

    No full text
    Deep brain stimulation (DBS) has proven to be safe and effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin, while its application to other neural pathways such as the circuit of Papez is under investigation. In particular, the fornix has gained interest as potential DBS target to decrease rates of cognitive decline, enhance memory, aid visuospatial memorization, and improve verbal recollection. While the exact mechanisms of action of fornix DBS are not completely understood, studies found enhanced hippocampal acetylcholine release, synaptic plasticity, and decreased inflammatory responses in cortex and hippocampus. Nevertheless, it is still premature to conclude that fornix DBS can be used in the treatment of cognitive disorders, and the field needs sound, preclinically tested, and disease-specific a posteriori hypotheses

    Deep brain stimulation and cognition:Translational aspects

    No full text
    Many neurological patients suffer from memory loss. To date, pharmacological treatments for memory disorders have limited and short-lasting effects. Therefore, researchers are investigating novel therapies such as deep brain stimulation (DBS) to alleviate memory impairments. Up to now stimulation of the fornix, nucleus basalis of Meynert and entorhinal cortex have been found to enhance memory performance. Here, we provide an overview of the different DBS targets and mechanisms within the memory circuit, which could be relevant for enhancing memory in patients. Future studies are warranted, accelerating the efforts to further unravel mechanisms of action of DBS in memory-related disorders and develop stimulation protocols based on these mechanisms

    Magnetic nanomaterials for wireless thermal and mechanical neuromodulation

    No full text
    Magnetic fields are very attractive for non-invasive neuromodulation because they easily penetrate trough the skull and tissue. Cell specific neuromodulation requires the magnetic field energy to be converted by an actuator to a biologically relevant signal. Miniaturized actuators available today range from small, isotropic magnetic nanoparticles to larger, submicron anisotropic magnetic nanomaterials. Depending on the parameters of external magnetic fields and the properties of the nanoactuators, they create either a thermal or a mechanical stimulus. Ferromagnetic nanomaterials generate heat in response to high frequency alternating magnetic fields associated with dissipative losses. Anisotropic nanomaterials with large magnetic moments are capable of exerting forces at stationary or slowly varying magnetic fields. These tools allow exploiting thermosensitive or mechanosensitive neurons in circuit or cell specific tetherless neuromodulation schemes. This review will address assortment of available magnetic nanomaterial-based neuromodulation techniques that rely on application of external magnetic fields
    corecore